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ABSTRACT

This report summarizes the results obtained during the Contract No. F 19628-89-k-0032

entitled "Advanced concepts in distortion-invariant phase-only filter design." This

research focused on improving and evaluating the techniques for designing pha.se-only

and binary phase-only filters.

This report summarizes our contributions in the following areas.

"* Fast algorithms for designing phase-only and binary phase-only filters.

"* Designing phase-only and binary phase-only synthetic discriminant function

filters.

"• Characterizing and improving the correlation peak sharpness of various

filters.

"* Use of 4 phases such as in complex ternary matched filters.

* Trading off various performance measures such as the signal-to-noise ratio

and correlation peak sharpness.
Acce6ion For
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"* Effects of input noise that is colored. DTIC TAB ]
UIiannounced L4 J
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"* Detector noise effcots. By
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1. INTRODUCTION

1.1 Motivation

Phase-only filters (1POJ'S) and binary phaf-e-only fillers (11,)"s) aIre (xtr.lJ.l\ al lr:ilive

in the sense that they provide high HIorner efficiencies and i are niore conveitiiw ft' r

implemnentation on available spatial light lfod1ulators (SLMs). l lowevr. .-,evral

inmportant issues must be addressed in designing 1OlFs and 13B1 I" , Fll( i IIss i(.

include: noise sensitivity of the filters, distortion tolerance, efficient algoritl is for filter

design, resulting correlation peak sharpnless, effect of deteclor noise aili, i d ra(-of'>

between various performance measures. \Ve have addressed manmy of' liese issules (diring

this research effort adi made many significant contributions. This report suimmarizes

these results.

1.2 Research Contributions

Following important results were established as par't of this resen rcli ef'ort. MJore

details can be found in subsequent chapters and appendices.

"* We have introduced new, efficient algorithms for designing phase-only filters

(POvs) and binary phase-only filters (BPOFs).

"* We have advanced new algorithms for designing phase-only and binary

phase-only distort.ion-invariant synthetic discriminant function (SDF) filter

algorithms.

* We introduced -a new performance measure called peak-to-correlation energy

(PCEh-to-chpfi;a•ftize the sharpness of correlation peaks.

* i



"* \Ve ldcrive•l :l¶()lit urns to (lesign I ()ls, Bl')l's )nd complex ternary

Satc(i'ied 'ilter5 ((lN'I l•s) to ,n-ixifi 2e PC( IH, the peak sharpness measure.

"* \VWe plr()opoýsl h'r:1tioll:il power filters (VI'Fls) to illustrale the trade-off's

:tiuoiw \' 'is) T iro()lrlll:trl(,C ule "tires 'in correlation filter design.

"* \We exten leded e 'work or optimunm-SNIl filter design to include colored

ii11plt lloiS.-.

"* \Ve injlcI(le(d the role of detector noise in filter design and showed that it

1(:•t(k to ilter 5:t huriatioii.

"* We Prlo)r( l( I i , ll ti-Criterina optimal binary amplit ude phase-only filters

('1):p11(, (l 4 lo rovi(li ,g p)lt1inial trade-offs among various measures.

1.3 Overview of the Report

The rest of this report is organized as follows. Chapter 2 provides a brief background

on clasical niatched filters, phase-only filters and binary phase-only filters. Chapter 3

sltiinariz'zes the reslllts of the fast, efficient algorithms we derived for the design of

I'01"s amli B1,01)i"s. Chapter AI introduces the concept of complex ternary matched

Fillcrs. (Clhapter 5 uliscrisses the results of extending phase-only and binary phase-only

CMieelpts to sylthlietic discri min ant functions. The effects of colored input noise as well

:is de•ctor iloise( :1re, c(•orsJl'red in ('I iapter 6. Th• new pleak shamrpness measure and its

r)l,, in 'ill ,r :I,.i :fr, i,.(., ss,,, in (Ci a hp ,r 7. Ain opt[irii i h1 met hod for t radling off

fs, rri,:asurr, i, fischi,,,e in ('hlpt(er S. Th'l clhapter pr(vides our co'nclusions.
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This report also includes various appendices which provide more details since each

chapter provides only the basic results.



5

2. BACKGROUND

2.1 Classical Matched Filters

Optical correlator has been the mainstay of optical pattern recognition for many years.

In the classical matched filter (CMF), the filter function H(u,v) placed in the frequency

plane of a VanderLugt correlator1 is given by

H(u,v) = S*(u,v) (2.1)

where S(u,v) is the two-dimensional Fourier transform of the reference image s(x,y) and

the superscript asterisk indicates the complex conjugate. It is well known 2 that the

CMF yields the maximum output signal-to-noise ratio (SNR). The output SNR is

defined as

A IE { c(OO)}12
SNR - Var { c(,)} ' (2.2)

where E{.} and Var {.} denote the expected value and variance and c(0,0) denotes the

correlation output at the origin. The underlying assumption is that the correlation

peak is at thc oriin.

The classical matched filter has three significant drawbacks.

"* The light throughput efficiency 3 (known as the Homer efficiency) is usually

small for CMFs since the filter transmittance is less than one at many

spatial frequencies.

"* Since II(u,v) in eq. (2.1) is complex-valued, it cannot be easily implemented

on available devices such as magneto-optic spatial light modulator. 4



. 'Tile CNtiV is cx trei ci V clý slsi t ive to distortionls ill tilie ilip ut scenle.

Several remledies hanve been propo~sed to alleviate these,( piroblemis. These-; inll tide: plr:Is('-

o1n, lv *iIlt(. 5 s (1() L'S) to illi p rove I tone r efficie ncv, hi iiary p1 iase-oii lv niIt ems6 (I 3 1's)

:1llow us'e of' 1)1iimvn l)rt:I li~lilt iiioolilkitoms aii(I synithletic (liscriIIlii :1ill I' l is'

(S1)'s) to ininprove distor-tioni-i ~i-ivamiance.

2.2 Phase-only Filters

To overmcomie tilie lighit effiieicn problemts of CMII's, H orner anid (;iaiiiio 5 swui'4ý"('st~ 'l tlie

use of(12012

IHere Hie filter magnitude is 1 at all spatial frequencies and thus the 1ligt, llirotiglipuit

elfi1cienev is very hligh. 1)esigiiiing the filter based oii only phasec (mnd niot tile

Il.Itagitittde) of' tilie l'otiiem trmaiisforinl (VT",) of the inlput 'is justifiled oiitilie bais tat

earl'ier experi ments by Oppenhieim and Lim8 sioxved that the 1,T phiase appeared to) be

more importanit titan the FTr magnitude in image reconstruction.

One of the problems withi the filter in eqi. (2.3) is that it is all-pass, i.e.. it hias unit

transmittance at all frequencies. Thius there is no mnechanism to control hiow muchi of

thle iliiput inoise gets tilrouigh the filter. In a previous effort., Vijaya I,ýuinar aiil Blahiri

stigglestedl the use of a region of support R? along with) thie POV. 'Fhe set i? cont fiins th-e

sp~atial frequencies that are not set to zero. The combination of thle I M, wvitll I? is

temitted as the opt ilnial phi ase-on ly filIteir (OP'OF) and is gi veii below.

{ II ~t)1 (l 4) fo r. (11' ') c 1?(e101 for, (2.1) ~



:11, K i'.i IZ1" c~e an1( .ht(- 111 !'()I-~ de -- 1f111" ?1 111:1 ((I I

(2.5)

PiF V( i') i tih le t rdtI lesi ty of thle infpuitt noise. \Whe n the i Vtp ut. fllo)Ise is w lii V

P (uir) NO :III(] the outpu)lt SNIZ (2ttII be approxinmlited -,s follow~s.

- \"OR 'Jlsoi,ic)j dude]-j

- T A k(2)R? k E I

where A1 ks the area of region R? and wve have used discretization for ap~proximationl. It

is, eivI(eeFromt eq. (2.6) thiat for a f~ixed AR we in ist, *inch roe thie AR1 freq lie icicis

wit i I liw hi"est Ik i js iir oi1. 1woptiIIII v:11111 c r i lfr.1 (,, cIII be (lfet ( iu ied

on lv by u ii cxli ultie eilI.



2.3 Binary Phase-Only Filters

While POFs improve Horner efficiency, they do not lend themselves for implementation

on some currently available spatial light modulators such as the magneto-optic SLMs

(MOSLMs). For example, MOSLMs can accommodate two phase levels (usually 0 and rt

radians) and perhaps two magnitude levels (0 and 1). Several methods have been

suggested for determining a binary phase-only filter (BPOF) for implementation on such

devices. These can be summarized as follows.

HBpoF(u,v) = Sgn { Re [ S(u,v) eJi] } (2.7)

where 0 < 0 < 7r/2 is known as the threshold line angle, Re[-] denotes the real part

and Sgn {.} is defined as follows.

+1 if x > 0
Sgn{x} if x < 0 (2.8)

Several special cases of the BPOF in eq. (2.7) are of interest. When 0 = 0, the BPOF is

obtained by binarizing the real part of S(u,v) and when 0-- 7r/2, the BPOF is obtained

by binarizing the imaginary part. When 6 = 7r/4, we binarize the sum of the real part

and the imaginary part of S(u,v). While the BPOF in eq. (2.7) is certainly convenient

for implementation on an MOSLM, it is also an all-pass filter and thus has no noise

rejection capability.

Vijaya Kumar and Bahri1 0 suggested the use of a region of support R along with the

conventional BPOFs. This leads to a filter with three transmittance levels (-1, 0 and

+1) rather than just two levels. Kast et al. 11 have recently shown that MOSLMs can be

made to operate in a 3-level mode. Filters using these 3 levels of transmittance are also
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known as ternary-phase nmplitude filters 12 (TPAFs).

Vijava 1Kumar and Bahrile suggested an algorithmn for determining 1? to in xiin ize the

output SNIZ when the inp)lut noise is white. The algorithim1ii is siIn1il:1i to thle ofi(

disc ussed in Section 2.2 except for one difference. T"hR difference is /t it *-, the

threshold line angle is needed in BPOF design. There does not appear to be -a closed

form expression for this angle. However, in most simulation studies, j3 -() (real-part

binarization) appears to yield the best output SNR.

2.4 Synthetic Discriminant Functions

"The CNlF outputs are very sensitive to input image distortions. To improve this

se nsitivity, Hester and Casasent' suggested the use of synthetic discriminant functions

(SDFs). In SDFs, the filter is constructed from a linear combination of a set, of training

inages. The weights in this linear combination are chosen so that, the correlation

outputs take on prespecified values (e.g., large values when the input is frorn a desired

cla.ss and small values when it is not). To quantify this, let 8 l(xy), .. , I8x,y)

denote the A' training images. Then the filter II(u,v) is given as S*(unv) where the

composite image s(x,y) is given as the linear combination of the N training images.

N
•s(x,y) = ai si (x,y) (2.9)

i~1

where the coefficients {al, a2, . . . , aI} are chosen to satisfy the following constraints

on the correlation outputs.

// .s(x,y) .sI.(xy) dxdy = c, i= 1, 2, . A., N (2.10)



I ()

herei~ r. v :II I sI re 1, 'S) r (.s I ti ( I. I )\- stjI )st~itI It I I Ig -q. I2() In (.1) we get V liI Ie~i r

('(jwiSio ~ir- Iin .\uniknown\j. W\e evnn thuis find *x) mind the SD)1 fiter II(ni,,'.

SfeI:il iai:tis ()( Sl;lVs have beenP roo~ over Owe laist 10) year-, l~ee. 1110>1, oA'

I I 'se yield 111 cuh-ij~ ir Imictietojis andl surfkr rom, hight., ef~f*meivnuv.-:

iI n 'leniinit IIollr):eiS le(itl Jiel111(m1rhci- ~mnV nq an AMii pro~po)sed n rehlaation alg~oiit him

for)I O)hillining la(- inY aml nnry phiase-oinly SI)Fs. In this~ report, we report a new

method0( t hat we Wal Lhi sulicss.-ive forciw, nig aorit~lim.
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3. EFFICIENT AI1 CORItII rMS FOR POF ANJ) 1POF I)ISICG.N

3.1 Basic Idea

Ve (liseus~ed inl Sectioll 2.2 nit ihagorit ithin For' (letcrni'iI*i1i , Ihle opltiliiil r-(gi-oi ol Slippot'

for lPOl dlesigni ani ini Ac(t oli 2..3 ani a''ortlithi 10t (elet (rtiiitIth~1le optinial regioti of'

slipp1 Ort' for' the RIPMO design. llio'-h algorithtins are alreaIdy (Il'iienei lot' cXari )pie.

when dealing MAt a :3001:2 lii ci array with 1021 pixels. there are :I total of'

2102-1 ,~10:300 possible choices for R?. Out of thesr_ one, I? is thle best. inI S-ectioni22

we st at ed t hat Mwlen thle iniput noise is whliite. the (111:1 t n 0 I (i.e., t he region of' surpp)ort

leading to maxim urn SINl1) must be ol1 tite following form.

I*= {(u,v) : S(vxt)j > T} 31

where 'I' is anl unknown threshold. This optimial threshold T needs to be determined by

Ian exhauistive ýsearchl

Sine a 32 X32 filter' array has 10.1 values in it, we need at most 102-1 thresholds.

Thlen R* can be (leterinitied 1w trying out all 102-1 thresholds, computing the resulting

SNRs and then choosing the threshold that leads to the highest SNR. Thus we need to

test only 1021 choices for R instead of 10300 choices. WVe have made additional

inmprovemnents to speed upl the algorithms.

XWe have proved"' t that if twvo or more frequencies of the Four'icr transforms of the

image have equal magnitudes, either Al of them or none of them -ire included in the

region of support for the optimal POF. A similar theorem can be stated for BPOFs

als,ýo. Proofs for' this catil be to,1(1Il~ inl our' Ap;'bied Opticrs reprtinitt inc'lud1(ed as Appendix A

of t his r'eport.
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This theorem provides an even more efficient way of finding the optimal R* for POFs

and BPOFs. For example, suppose we quantize the IS(u,v)l values to 4 bits. That

means that there are only 16 distinct magnitudes in IS(u,v)l after quantization. From

the above theorem only 16 thresholds need to be verified. This is much faster than the

original algorithm. Of course, the quantization in IS(u,v)l leads to sub-optimal filters.

We suspect that this suboptimality will be insignificant unless the quantization is very

coarse. An efficient algorithm based on this quantization idea is presented in Appendix

A.

3.2 Numerical Results

To understand the effectiveness of this algorithm, we tested it on the 32X32 pixel gray-

level tank image shown in Fig. 3.1. To compute the filters, we zero-padded this image

and performed 64X64 sized discrete Fourier transforms using the FFT algorithm.

Fig. 3.1. The 32X32 tank image used in the numerical experiments.
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First, we compared the efficiencies of the original algorithm and this new algorithm for

designing the optimal R* for 101s. Using the most efficient sorting algorithm, the

original algorithm took 10.15 seconds of CPU time on our Vax 11/750 whereas the new

algorithm (using 8 bit quantization) took only 0.13 seconds on the same machine. This

is a speed-up by a factor of 78. \Vhen the FFT size was increased to 128X128, tile

speed-up factor improved to 130 for the same 8-bit quantization. The price paid for

this speed improvement is a small decrease in the output SNR. The old algorithm

yielded an output SNR of 18.834585 dB whereas the new one yielded 18.834409 dB.

This difference is insignificant.

When the new algorithm was applied to find the optimal regions of support for BPOFs,

the CPU times decreased from 1585 seconds (for all 19 ROSs for the 19 choices of 0) to

16.8 seconds for a speed-up factor of 95. When FFT sizes were increased to 128X128,

this reduction factor went to 980. The SNR loss due to quantization was no worse than

0.00046 dB. These numerical results conclusively prove the superiority of this

algorithm.
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4. ClOMPLEX TERNARY MATCHEI) FILTERS

4.1 Motivation

lie( l,01"', and ~ lliOs e(lS-ar th I la ' -niii . uiii e iiifror-Iilitioii. III ract. ll(ls relt il ()Illy

0I I hitI of, i I I or-itatiolIi (-I Or U-) at endcIi s Iawtia l-fequency. It is imllprtalt to finrd (lii

if wve ca:n iiiiprove th lewrfrnmnnce of the filer 1q, allowing more bis of repesnt a! on

ill thle rill er (lo)minaii.

In aI previows effort. \'ij:Iya u niuiti and ('onnvllv 15 analyzed1 the effect on the, outpu~lt

S, NN'. of* q ia nti zi g thle ph ase of'a I P01' to A' levels. 'They showed that when A' - 2 (ns

ini Bl~()l) the SM? decreasedl Q about .1 (l13 coin pared to the PI-O'~. On the other hand,

for NT > .1, this decreas~e in SNl? <0 1 (11. Thus usingr A ph~ase-levels seems like an

Intcre~sti ng a pp roach.

II I lie spiri i~t of' using .1 I iase levels, IDic(key an 111 Iai scie 1 b suggested quad( phase-only

fMltrs (Ol0O"s) whic can he implemented using 2 MOSLN~s arranged in a (leour-lhiase

airrangemnent. In Q[120Fs, both dlevices are uisedl in a BPOF mode and thus no noise

coiitol is provided. Complex ternary matched filers 17 (CTMFs) are designed to

provide this noise tolerance.

4.2 Basic Formulation

The CTNl~II' (uxv) is defined as

II-TA1F( u, v) = H 1 (ulv) - 112(ulv), (4.1)

where j v-I anrd I11lixuu) and II.)uli) are ternary flilt~ers, i.e.., they can t~ake oii thlree

levels, of' transmnittanre (-1 () and ±-1). Thus each of t~his ca-,n be imlpleinentedl using an
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NIOSLIN operated in a ternary mode. The possibility of zero transinittatice allows us to

control the noise sensitivity.

Letting RI and R.2 denote the regions of stipport for l/(ui) and JI,(u,v), respectively,

we can write the following expression for the output SNR.

If S(u,V)HI(u,v) dudv fR S(u,v)H2(u,v) dudv 12

12
SNR CTAIF = (4.2)

I J (uv)dudv + jJ P2(uv)dudv

Using simple symmetries, we can show that SNRCTFAF is optimized (for given R 1 and

R,2) by selecting Ht(u,v) and IH2 (u,v) as below.

fSgn { Re [S(u,v)e-jO]} for (u,v) C R(1
1, 0 for (u,v) 0 f1?

- Sgn { Im [S(u,v)e-j3]} foi- (u,v) C R,
Hoku') -0 fr(v) (4.4)

"[ 0 for (u,v) 0_ R,

where Re [.] and Im [.1 denote the real part and the imaginary part, respectively, and

is the threshold line angle as discussed in the case of BPOFs. Substituting (4.3) and

(4.4) in eq. (4.2), we obtain

JR IA (,v)I dudv + J Is/,A )l duV]2

SNRCTMF = (4.5)

f fi P(u,v) dudv + fJfJ P(u,v)dudv

A A
where SR(u,v) and Si/u,v) denote the real part and the imaginary part, respectively, of
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[S(1,,v) c-3I. For the special case of white noise P,j(u,v) = A 0, a constant and optimal

A A
R and R.2 can be selected to maximize SNRCTArhF by sorting IS/(u,v)l and ISi(?1,v)j

values.

4.3 Simulation Results

We carried out our computer simulations using the 32X32 tank image shown in Fig.

3.1. Once again, FFTs of size 64X64 were used to avoid getting a circular correlation

instead of a linear correlation. The image energy was normalized to 1 and has 60.26%

of its energy in the even-part (or equivalently in the real part of its FT) and 39.74% in

the odd-part (or equivalently in the imaginary part of its FT). The efficient algorithm

discussed in Section 41.2 was applied to this data. The resulting optimal regions of

support are shown in Figs. 4.1 and 4.2. In both figures, white areas represent where the

filter has nonzero transmittance and black areas represent spatial frequencies that are

completely blocked. The center of the array denotes the (0,0) frequency. Fig. 4.1 shows

the optimal region of support for H,(u,v) and Fig. 4.2 shows the optimal region of

support for H9 (u,v).
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Fig. 4.1. Optimal Region of Support for Hl(u,v) in CTMF.

Fig. 4.2. Optimal Region of Support for H 2(uv) in CTMF.
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"The noise tolerance of the CTMF was tested by adding zero-mean, Gaussian noise to

the input image. Resulting correlation outputs were analyzed and output SNIs were

estimated. \Ve show in Tal)le 4.1 the output SINRs for various filters.

Table 4.1

Output SNRS (dB) for Different Filters

Input
SNR BPOF OBPOF
(dB) CMIF POI OPOF (Real) (Real) QPOF CTMIF

-20 10.76 5.09 9.57 4.13 7.63 5.45 8.70

-10 20.6-1 14t.77 19.28 12.23 17.42 14.62 18.67

0 30.60 24.73 29.02 22.07 27.24 24.59 23.63

10 40.59 34.72 38.98 32.02 37.15 34.58 38.64

20 50.58 ,44.72 48.92 42.00 47.27 44.57 48.63

From this table, we can draw some interesting inferences. Note that using an optimal

region of support with POFs improves the output SNR by about 4.5 dB. Similarly

going from BPOFs to OBPOFs improves the output SNR by about 5 dB. We show in

the last column of Table 4.1 the output SNRs obtained from CTMFs. Note that they

are within 2 dB of the highest possible output SNRs (i.e., those achieved by the CMF).

Finally, we show in Fig. 4.3 sample correlation outputs from the CMF, the POF and

the CTMF when the input has no noise. Note that the CTMF provides a broad

correlation peak. In Fig. 4.4, we show sample correlation outputs using the same filters



\v01' 1 t ie iiit is co' ll-lted Iy hadditive noise. Note that t lie CTIN I" olutpujt (like C(MP

out put) is relatively uniiafTected by input, noise whereas the POE outp ut is degraded by

11tu1 ,oise. 'is noise tolehrnee in CTMNFs is due to the opti mi :.ton off ut11p1ut SNIR

ill desi ginug I ("I'.I's. More details about, this can be found iin the reprint in Alppendix

I I.
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(b)

Fig. 4.3 Normalized (peak value set to 1) correlation outputs when the input,
imiage has, no noise. (a) CMF output, (b) POE outpuit -,n(] (c) CTMF
out pult.
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Fig. 4.4 Normalized (peak value set to 1) correlation outputs when the input

image has noise such that the input SNR is 0 dB. (a) CMF output,
(b) POF output and (c) CTMF output.
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5. PHASE-ONLY AND BINARY PHASE-ONLY
SYNTHETIC DISCRIMINANT FUNCTIONS

5.1 Motivation

,As discussed in Section 2.4, SDFs provide a method to improve the distortion tolerance

of the matched filters. Several variations of the basic SDF method have been suggested

over the last 10 years. These include: minimum variance SDFs18 , minimum average

correlation energy (MACE) SDFs 19 and Gaussian-MACE filters.20 These and other

variants of SDFs improve various attributes. However, they all lead to fully complex

filters that are not amenable for implementation on devices with limited modulation.

Jared and Ennis 13 were the first to propose a method to design SDF filters for

implementation on limited modulation devices. They suggested an iterative algorithm

(called the relaxation algorithm) where the weights of the linear combination are

adjusted to simultaneously meet the SDF constraints and to provide phase-only or

binary phase-only filter function. In this research effort, we have advanced a new

method that we call the successive forcing algorithm 2 1 (SFA) capable of designing

limited-modulation SDFs.

5.2 Successive Forcing Algorithm

This algorithm is most easily explained using the vector notation. Let us discretize the

N training images to get d-dimensional column vectors sl, s21 .... sN. Let X be a

dXN matrix with its i-th column given by s. Let us denote the composite image s(x,y)

in eq. (2.9) by an equivalent vector s. Then

s =a sI+I + a 2 s 2 +•• + a NsN

= Xa (5.1)
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wl ere a ý [all, a(., . . . , is the column vector of weights. The correlation output

constraii ts ill eq. (2.10) can be rewritten as

XTS = , (5.2)

whllere c - [{ci, .•• , 'is the column vector of correlation output constraints.

The usual SDFI solution is obtained by substituting eq. (5.1) into eq. (5.2) and solving

for s as below.

s SDF - X(XTX)- 1 c, (5.3)

which can be easily seen to satisfy the SDF constraint in eq. (5.2). However, the

problem with this is that it is fully complex. The successive forcing algorithm2 1 (SFA)

designs filters that meet the SDF constraints in eq. (5.2) while meeting the device

requi rements.

Algorithm:

Step 1: Start with an arbitrary initial complex coefficient vector a.

Step 2: Determine the filter vector s from eq. (5.1).

Step 3: Force the frequency response of s to meet device constraints. For
example, if we want phase-only SDFs, we set the magnitude of the
Fourier transform of s(x,y) to one and leave the phase unchanged.
Let this be denoted by s'.

Step 4: Determine the new constraints satisfied by s', i.e., c' - XTs'.

Step 5: If the magnitudes of the components of c' are close to that in c, stop
and exit; otherwise, replace the magnitudes in c' by magnitudes in c
and leave the phases unchanged. This leads to c".

Step 6: Find the next vector a as (XTX)-l c" and go back to Step 2.

There is no proof that this method will always converge. However, our numerical

results are encouraging.
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5.3 Numerical Results

To test the SFA, we chose a 2-class problem where one c'lss i. the tanik iimage shiowii ill

Flig. 3.1 and the other cl:iss is the APC image in Fig. 5.1. Extensive siintilatioiis were

cond(ucted. lHere we show some sample results.

Fig. 5.1. The 32X32 APC image used for the false class.

\Ve used 6 training iunages (at 60' intervals) from the true class (i.e., tanks) and 6

training images from the false class (i.e., APCs). In Fig. 5.2, we show the correlation

outputs (at the origin) when the phase-only version of the conventional SDF is

employed. There is very little separation between the curves for the true class and the

false class. In comparison, the separation between the true class outputs and the false

class outputs for the phase-only SDF designed using the SFA is much better as shown in

Fig. 5.3.

The results in Figs. 5.2 and 5.3 show how the phase-only S)DFs work with training

images. In Fig. 5.1, we show the correlation outputs with all images when the phase-

only version of' the conwye.ii i al SI)i" is employed mid iin Fig. 5.5 we sho w the

'Trrel ation 0litT) U!ts wit h all imiag•es w\Oen the ph ase-omily SI )s iming SFA are eni ployed.
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Note that the number of misclassifications is less in Fig. 5.5 compared to Fig. 5A. To

improve further the performance of phase-only SDFs designed using SFA, we designed

it using all 72 available training images (36 from each class). The resulting correlation

outputs show significant separation between the two classes. These basic ideas can be

extended to binary phase-only SDFs also.
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Fig. 5.2 Correlation outputs with the training images for the phase-only
version of the conventional SDF.
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Fig. 5.3 Correlation outputs with the training images for the phase-only SDF

designed using SFA.
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Fig. 5.4 Correlation outputs with all images for the conventional phase-only

SDF designed using 12 training images.
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Fig. 5.5 Correlation outputs with all images for the phase-only SDF designed
using SFA and 12 training images.
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Fig. 5.6 Correlation outputs with all images for the phase-only SDF designed

using SFA and 72 training images.
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6. EFFECT OF COLORED NOISE AND DETECTOR NOISE

6.1 Background

Nluch of the previous research in correlation filter design was based on the nssumption

Of w hlte noise being added to the input scene. This may not be appropri•te in many

situations. For example, often the objects of interest may be in natural backgrounds

that can be modeled as sample realizations from random noise. However the spatial

spectrum is rarely constant and thus these backgrounds must be modeled as colored

no0Se.

Another important noise source often ignored is the detector placed in the correlation

plane. These detectors introduce their own noise prior to any decision scheme. If this

detector noise is low or if the light coming through the filter is strong, this is not an

issue. But one of the reasons for the popularity of light-efficient filters (such as POFs)

is the small amounts of light available in the output plane. Thus detector noise

becomes an important issue.

6.2 Colored Noise

When the input noise has a power spectral density Pn(tl,v), the resulting output SNR

for a filter H(u,v) can be written as

If f H(u'v) S(u,v) dudv 12

SNR = (6.1)

For the case of a POF with region of support I?, this SNR becomes
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fIR IS(u,v)I du dv]j2

SNR F -- (6.2)

fI R P(u,v) du dv

In general, it is not obvious how R should be chosen to maximize SNRmF. We have

been able to show22 that the optimal region of support R* must be of the following

form.

R* {(u,v).: IS(Uv) > T } , (6.3)P~(u,v)-

where T is an unknown threshold that needs to be determined. Above basic procedure

can be extended to BPOFs and CTMFs also. Details are presented in the Optics Letters

reprint attached as Appendix C.

To illustrate the advantages of using the colored noise formulation, we designed a POF

with region of support optimized for a particular "colored" noise. Here the background

was used to estimate the spectral density of the colored noise. Fig. 6.1 shows the

reference image in zero background and Fig. 6.2 shows the same image in a natural

background.
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Fig. 6.1. Segmented Reference Fig. 6.2. Reference Image in

Image Background

The background in Fig. 6.2 was used to estimate fn(u,v). This estimate is shown in

Fig. 6.3. The estimated Pn(u,v) was used with eq. (6.3) to determine the optimal region

of support. Fig. 6.4 shows the optimal ROS under white noise assurhption and Fig. 6.5

shows the same using estimated Pn(u,v). Note the significant difference between the

two ROSs.
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Fig. 6.3. Es. 2 ted Power Spectral Density of the Background in Fig. 6.2.

Fig. 6.4. Optimal Region of Fig. 6.5. Optimal Region of
Support Under White Noise Support for Estimated Colored
Assumption. Noise.

More importantly, the correlation outputs must be examined. Figs. 6.6 and 6.7 show

the correlation outputs for ROSs in Figs. 6.4 and 6.5, respectively, when the input

image was the reference in zero background. While both peaks are at correct position,
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the peak fromn the colored noise ROS is much sharper. Figs. 6.8 and 6.9 show the

correlation outputs when tile input image was the reference in natural background in

Vig. 6.2. The difterence between the two outputs is dramatic, illustrating the

in ilortance of, colored noise ROS.

Frig. 6.6. Correlation output when the reference image in Fig. 6.1 and the ROS
in Fig. 6.4 were used.
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lig. G. .7. Correlation output when input is the image in Fig. 6.1 and ROS is
the one in Fig. 6.5.

Fig. 6.8. Correlation output when input is the image in Fig. 6.2 and the 1?O)S
is the oie in Fig. 6.,
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Vig. 6.9. Correlation output when input is the image in Fig. 6.2 and the ROS

is the one in Fig. 6.5.

6.3 Detector Noise

Ani often ignored aspect of filter design is the detector noise. If there was no detector

noise, there woul(l be no need for a light-efficient filter such as the POF. Instead, we

can amplify the correlation output by any desired amount and carry out perfect

detection. A reasonable model for detector noise is that the observed output is y where

Y = C (0,0) + ,nd, (6.4)

where c(O,O) is the correlation output in the absence of noise and nd is the detector

noise. We assume that nd is a random variable with mean I'd and variance ad2. We

have shownl tli:ht lie olit, )Ut SNNR is then given as follows.



3S

i/ I llu,cv) .S'(u,v) (lUlL, I2

>',N(I1(11 12 l .-

-AR, (ro.5
(7 (1 2 l• ( , ,,,, ~ ~ ,,,) ",I,!)j,

\When let ector lwoise 15 zero or small, SPVRd in eq. (t.5) is similar to tde usua:l SMN,
expressioni and prior results still hold. But when ad2 is laIge, maxim(izing '1Aied

equiv i ent to m aximizing the correlation peak magni tude. ()ur exlperimen ts h:ave sihown

tAmt when a d" is large or when the input noise is small, the optimal 1IOS is l:Impgy

allowing much of the input light to pass. On the other hand, when 'inp ut, noise is large

or detector noise is weak, the optimal region of support is small thus preventing much

of the input noise. We have derived the rigorous formulae for this. The results mre

ilcluded in JO,%A-A reprint23 attached as Appendix D.
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7. MAXIMIZING PEAK SHARPNESS

7.1 Motivation

\\11 lit -I ouigl Ilt pult S N I?.s aie certainly I needled when using correlation fi It ers, it is 1 Iso

in port ati t titat the restiltiwti correlation ou tpiuts have sharp pea ks. Siti 'h shrp plý.aks

eniab le arccuirate localizaition of the input target andl can i in prove t. lie Iscrtitin ii:ition

ca Ipability of the filters. Prior to our research described in this chap~ter, there was

relat~ively' little research done in designing filters to rnaximize the p)eak sharpness.

D)ickey and Ronicro24 showed thait the conventional phase-only filters are dulally optimial

iniw ~ sense that tL,,y mnaximnize both output SNR and output peak shatrpness.

We hiave proposedl a new perforniance measure called peak-to-correlation energy (BCE,-).

The P'Cl. is define tie~s below.

__ lc(OO)12
-C (7.-1)

f C(rX, r Y)12 dr1 dr

where c-(-, , r Y) is the correlation output and c(0,0) is its value at thme origin. The

tuiutflrat~or in eq. (7.1) is the square of the peak value wher~eas the denominator yields

the total energy in the ccrr-elation output. For sharp correlation outputs (e.g., delta

functions), the PCE is very high whereas for broad correlation outputs (e.g., constant

functions), the PCE is smnall. Thus designing filters to maxitnize PCE (an lead to filters

ytelding sharp correlation output peaks.

7.2 Phase-only Filters Maximizing PCE

I *i ig Parevai's tlImeoretn. t Ie w pC 1 in eq. (7.1) can he rewritteni -is



'10

IIJII(u,,) S(.u,v) dudv12

PCE - (7.2)

f/f ll(u,v)-2 IS(u,v)12 dudv

If II(i,v) is allowed to be complex, then PCE is maximized by H(u,v) I /5'(u~v), the

inverse filter. The inverse filter, of course, suffers from the problems of excessive noise

sensitivity.

When JI(u,v) is limited to be a phase-only filter with region of support H?, the resulting

PCE is given as follows.

f fR IS(u,v)l dudv]2

PCEpOF (7.3)

iff IS(,,,V) 12 dd

"l'e region of support maximizing the PCEpoF in eq. (7.3) was shown by us to be of the

following form.

R*= { Is(u,v)I < T} (7.4)

where T is an unknown threshold that must be determined by a search. The proof for

this is provided in the Optics Letters reprint included as Appendix E. Note that the

regions of support for maximizing SNR and for maximizing PCE will be different.

7.3 Simulation Results

For testing the advantages of using the optimum-PCE POF, we used the 32X32 missi!e

lu ncher test image shown in Figure 7.1.



Fig. 7.1. The 32X32 missile launcher image.

As usual, FFTs of size 64X64 were used. The optimum region of support for POFs

maximizing the SNR and the PCE are shown in Figs. 7.2 and 7.3, respectively.

Fig. 7.2. The optimal region of support for the POF maximizing the SNR.
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Fig. 7.3. The optimal region of support for the POF maximizing the
PCE.

The region of support in Figs. 7.2 and 7.3 are very different. Obviously, the goals of

maximizing the SNR are incompatible with maximizing the peak sharpness. In the next

chapter, we will explore optimal tradeoffs between the two extremes. In Table 7.1, we

show the output SNRs and PCEs for different filters. The input SNR used was 32 dB.

Note that optimum-PCE POF provides an increase in PCE of 17 dB over the CMF and

of 7 dB over the conventional POF. Figures 7.4 to 7.7 show correlation outputs for the

4 filters. Note that the output from OPCE-POF is the sharpest. We include in

Appendix F a reprint that shows how these ideas can be extended to BPOF, CTMF, etc.
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Table 7.1. SNR and PCE Values for Various Filters

Filter Type SNR (dB) PCI"IE (d(1)

CMF 68.39 16.00

POF 59.01 26.74

Optimal-SNR POF 66.60 13.71

Optimal-PCE POF 49.67 33.55

Fig. 7.4. CMF Output
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Fig. 7.5. POF Output

Fig. 7.6. Optimum-SNR POF Output
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Fig. 7.7. Optimum-PCE POF Output



8. OPTIMUM TRADE-OFF FILTERS

8.1 Motivation

\Ve have seen in Chapter 7 that some of the desired goals in correlation filter design are

eoiiflictinr, lVor exam ple, maximizing SNR leads to emphasis on low spatial frequencies

whereas maximizing PCEs leads to high-frequency emphasis. It is important to

appreciaie and understand these tradeoffs and design optimum tradeoff filters. This

will help us tailor the filter design to suit particular applications. For example, if the

input image is subject to much input noise, it is necessary to optimize the SNR. On the

other hand, if the application limits the available power, more light-efficient filters are

d(esired.

While SNR and PCE are useful measures, there are other important measures also.

Examples include: Ilorner efficiency to measure the light throughput capabilities, the

accuracy of peak location, discriminability and distortion tolerance. Not all measures

can be o)ptimized using one filter. We will present some of the tradeoffs in this chapter.

8.2 Fractional Power Filters

We have seen already that the CNFs maximize the SNR, the inverse filter maximizes

the PCE and the POF maximizes the Horner efficiency. We have introduced 26 the

following fractional power filters (FPFs) to illustrate the resulting tradeoffs.

SIS(u,v)IP eO(u'v) if IS(ui,v) Z 0
H~pf,(u,v) = (8.1 )

0 if IS(U V)l = 0

where p is a real number and IS(u,v)f and o(u,v) are the magnitude and phase,.

respectively, of the Fourier transform of the reference image s( ,y). Iere p = 1 leads to

the CMF, p = 0 leads to the POF and p = -1 leads to the inverse filter. \Ve can
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derivei expressions for SNI, PCEI an-( florner efficiency in terms of' p and S( u,

These expressions can be used to display the resulting tradeoffs.

\Ve have used the 32X32 gray level aircraft image shown in Fig. 8.1 for these

numerical experiments. This image was placed in a 64X64t array and zero-padded prior

to pert'orming a 64X64 FET. The resulting IS(u,v)I was used to compute SNIZ, PCE

and Horner efficiency as a function of p.

Fig. 8.1. The aircraft used in the numerical experiments.

We show in Fig. 8.2 the three measures (using a dB scale) as a function of p. As

expected, the SNR peaks for p = +1 (CMF), the PCE peaks for p = -1 (inverse filter)

and the Horner efficiency peaks for p = 0 (the POF). We can also clearly see the

resulting tradeoffs. An interesting observation is that the SNR and PCE curves appear

to cross at p = 0 (the POF). Thus the POF may provide a reasonable compromise for

both PCE and SNR while providing maximum Horner efficiency.
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Fig. 8.2. SNR, PCE and Horner Light Efficiency (in dB) as a function of p for
the image in Fig. 8.1.

8.3 Optimal Trade-off Filters

Recently, Refregier 27 has derived filters that provide optimum tradeoff among the three

measures (SNR, PCE and Horner efficiency). He showed this optimal tradeoff filter

(OTF) as given by

s(u,v)
H(u,v) ax --- { (8.2)

'a P (u,v) + (1-u) IS(u,v)12

where 0 < p < 1 and the function a) (.) is given as follows.

fxy if Iyl < 1/x
WX(y) = (e-Jo if jYj > i/x (8.3)

where V, is the phase of y. Thus the OTF is a phase-only filter at some frequencies and
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:l Iull c<>),i 1-(' f lt,r :0t otlw(r 'l'c(,ql1c, cieý..

W11('11 we arc lilt (rcstc(I iii designing IPOFs with opthinda1 tr:ideoNT h)etwee(I SNIZ a ii

IPC 11 we can combine the denominators of the two measures to come uI) with the

f*( )1'wi lu c(01 lJ)pr lliC e p)le''orin) lice measure (C'PNM).

C f f Is(u.v) II(u,v) dudvj 2

c't'•t =(8.4)

/f H(u.v)12 [P,,(u,v) + , IS(,v)12]dud,,

vlucre -f dcenotes the relative emphasis between SNIZ and PCE. For -r -- 0, CPM is

identical to the SNR whereas for very large -1 values, CPM is proportional to PCE. For

the case of PO~s with region of support R, the CPM is given as follows.

ifR IS(u,v)l dudv12

o = (8.5)

f [P,(u,v) +± IS(n,v)12] du'd

\Ve have shown28 that the optimal ROS R* maximizing this CIIMPOF is given as

follows.

R* = { (,> T } (8.6)p n(1,7),) + _Y IS(u,,v)12

where T is an unknown threshold to be determined.

We used the binary boundary image shown in Fig. 8.3 for simulation. The resulting

trileoff between SNR and PCE is shown in Fig. 8.4. Similar experiments with BPOFs

have also been carried out. Appendix G contains the reprint that details these
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tradeoffs.

Fig. 8.3. Binary boundary image of a truck.
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Fig. 8.4. PCE vs. SNR as -y is varied.
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9. CONCLUSIONS

Several significant contributions have been made to the arei, o" 1,ii _,-only and binary

plia-se-only filter design as a result of this research project. We summarize here the

niajor contributions.

"* \Ve showed how previous algorithms for designing optimal POFs and BPOFs

can be improved to result in a speedup of about two orders of magnitude.

W \Ve introduced a new algorithm known as the successive forcing algorithm

(SFA) to design limited modulation (e.g., phase-only and binary phase-only)

synthetic discrim;nant function filters.

"* We extended the notion of optimum-SNR POFs and BPOFs to include

colored noise in the input scene since colored noise is a better model for the

iiatural background in many input images.

"* We designed P4OFs and BPOFs to maximize the output SNR when detector

noise is also present. The presence of detector noise results in the saturation

of filter magnitude.

"* We introduced complex ternary matched filters (CTMFs) that can be

implemented using two ternary devices such as the magneto-optic spatiail

lignt modiulatkr (MOST ,M).

"* \Ve imt'rodueed a new performance measure called peak-to-correlation energy
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(1CIE) to characterize the sharpness of the correlation peak.

"* We desitgned POFs, BPOFs and CT4MFs to maximize the resulting PCiJ;.

"* We introduced fractional powr:r filters (1'IPls) to illustrate the tradeofTs

among SNR, PCE and Horner efficiency.

"* We designed optimal tradeoff filters (OTFs) capable of providing the

optimal tradeoff among various measures.

\Ve believe that these contributions have significantly expanded the capabilities of'

phase-only and binary phase-only filters thus making them even more attractive for

optical implementation.
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APPENDIX A

Fast algorithms for designing optical phase-only filters (POFs)
and binary phase-only filters (BPOFs)

Zouhir Bahri and B. V. K. Vijaya Kumar

Very efficient suboptimal algorithms for the design of phase-only filters and binary phase-only filters are
presented. A reduction of 2- to 3-orders of magnitude in computer time is obtained over previous algorithms-
The loss in signal-to-noise ratio is negligible (<0.001 dB).

I. Introduction rithm for the design of POFs. Section IV. is analogous
Phase-only fitters (POFs)1,2 and binary phase-only to Sec. III. except it is concerned with-BPOFs. Final-

filters (BPOFs)3-7 have received much attention in ly, Sec. V. summarizes our results.
optical pattern recognition research. While earlier
work in the area of POFs and BPOFs has been more or II. Background
less adhoc, several research groups6 .8 ,9 have recently
started to investigate optimal ways of designing POFs A. Phase-Only Filters
and BPOFs. Most of these efforts have focused on We have shown elsewhere8 that the OPOFs have the
optimizing the output signal-to-noise ratio (SNR). In same phase as that of the classical matched filters.
addition, we have introduced8 ,9 algorithms to numeri- The SNR obtainable from the OPOFs can be increased
cally determine the optimal POFs and BPOFs for the further by introducing a region of support R. This
detection of arbitrary reference images corrupted by region R determines the spatial frequencies for which
additive white noise. Both optimal POFs and optimal the OPOF is not zero. The role of this R is to suppress
BPOFs are characterized by regions of support. the frequencies which have little signal power and a lot
When a spatial frequency is not included in the region of noise power and in the process to improve the SNR.
of support, the resulting filters have zero magnitude at Thus, the OPOF, strictly speaking, is not a POF since
that frequency. Thus, a BPOF coupled with a region it accommodates two magnitudes (zero and one).
of support is, strictly speaking, a ternary-valued (- 1, 0, However, even conventional POFs have two magni-
and +1) filter. tudes since the filters are always contained in an aper-

Here, we provide very efficient suboptimal algo- ture. Our earlier research has determined that the
rithms for the design of regions of support for the optimal R must maximize the following SNR expres-
optimal POFs and BPOFs. These very efficient algo- sion:
rithms result in an impressive reduction in CPU time [2[ (1)d
(2 to 3 orders of magnitude). This is done at the Is()1
expense of a very small loss in output SNR (<0.001 dB SNROPOF = (1)
for all cases we tested). This speedup in BPOF design JsP(J)df

should allow determination of the optimal BPOFs
adaptively in real time. In the above equation S(f) denotes the Fourier trans-

The remainder of this paper is organized as follows, form (FT) of the reference image s(x) and P,(f) the
In Sec. II., we provide some background material in noise power spectral density. We will use 1-D nota-
which we briefly summarize the earlier algorithms. In tion throughout for simplicity, but all our results can
Sec. III., we present the new efficient suboptimal algo- be easily extended to higher dimensions. For the case

of white noise, the denominator in Eq. (1) depends
only on the area of R and not on which exact spatial
frequencies are included in this region. Thus, for a
given size of R, we must include those spatial frequen-

The authors are with Carnegie Mellon University, Department of cies that maximize the numerator of Eq. (1). To do
Electrical & Computer Engineering, Pittsburgh, Pennsylvania this on a digital computer, we use the discrete notation.
15213. To accomplish this, we reorder the samples of the

Received 27 October 1989. signal Fourier transform as below:
0003-6935/90/202992-05$02.00/0.
© 1990 Optical Society of America. ISMI - S(2) >_ . .. >_ IS(d)l, (2)
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where d is the number of samples in the signal discrete The values IS,(l) for n E P, and the values IS,(n)l for n
Fourier transform (DFT) S(k). Let K denote the C P2 are then sorted in descending order. Hence, a
numberofpixelsintheregionofsupport. Bychoosing discrete approximation for Eq. (8) is
K pixels corresponding to the first K signal DFT values [ r i
in Eq. (2), we will maximize the resulting SNR for that LV ,I + Is21l
choice of K. The corresponding SNR is given by SNR n =1+ (1 1

[. IS(i)I) where K, and K 2 denote the number of pixels in P, and
SNR(K) = K P2 Iz, respectively and a is a constant that includes the

white noise level and the discretization constants.
where a is a constant that depends on the sampling Here, the superscript n in ISI and ISN refers to the nth
interval used (to convert integrals into summations) largest value in the corresponding array. Next, we
and the level of the white noise present in the input find that optimal values of KI,K 2 through a search
signal. We numerically evaluate SNR(K) for all possi- along the grid (i.e., we fix K, and find the optimal value
ble choices of K and select the one that maximizes it. of K2 and repeat this process for all values of KI and
Notice that without the sorting in Eq. (2), for each choose the best case). This will yield the OBPOF.
value of K, we must try all possible regions of support A subtle aspect of the above algorithm (not realized
consisting of K pixels. This is not practical even for earlier) must be pointed out. The 0 used in the BPOF
small K values. form of Eq. (4) must equal the phase of the complex

correlations response at the origin when this BPOF is
B. Binary Phase-Only Filters used. When the BPOF of this form, using 0 as the

We have shown elsewhere9 that the optimal BPOF TLA, produces the same 0 as the phase of the correla-
(OBPOF) takes the form tion response at origin, we call such a BPOF a feasible

H(f) = 'RYf) Sgn[S,(J) cos(O) + S(f) sin(O6)l, (4) filter. In general, there is no guarantee that the
BPOFs defined according to Eq. (4) are feasible.

where IR(f) is the indicator function for region R and However, we have shown recently' 0 that when we find
where Sgn(x) is defined as the 0* yielding the best SNR among all TLAs, the

+1 ifx-0 corresponding BPOF is indeed a feasible filter and is
Sgn(x) - I otherwise (5) the OBPOF we are searching for. However, the filters

maximizing the SNRs for specific 0 values are not

In the above, 0* denotes the (yet to be determined) necessarily feasible. Thus, the above algorithm works

optimal threshold line angle (TLA)5 and S,(f), Si(f) only because we scan all values of 0. Dickey et al."

denotes the real (imaginary) part of S(J). To deter- have recently proved the optimality of the above algo-

mine the OBPOF, we scan all values of TLA 0 (from 0 rithm for a more general filter that they term as the
to ir/2). For each 0, the R that leads to the highest complex ternary matched filter (CTMF).
SNR is determined and the corresponding SNR is Ill. Efficient Suboptimal Algorithm for POF design
noted. The TLA that defines the OBPOF (0*) corre-
sponds to the largest among the SNRs. To find the A. Analysis
optimal region of support for a given TLA, we partition We start the analysis of the new POF algorithm by
R into R, and R 2 defined as the following proposition concerning the optimal re-

R1 -Vf e R: IS,(1) cos(f)I > IS,(f) sin(O)II (6) gion of support R
Proposition 1: If two or more frequencies of the

SIf R : IS!) cos(9)I -< IS,(/) sin(9)Il. (7) signal Fourier transform have equal magnitudes, ei-

The SNR (for the TLA in question) can then be writ- ther all of them or none of them are included in the

ten as optimal region of support.
Proof: It is sufficient to prove the above proposition

[f. S,(/ldfj + IS,([idf for two frequencies only. The case of three or more
SNR ' , (8) pixels easily follows by deduction. Assume IS(K 0)I =

I P()df FS(Ko + 1)1 for some Ko -: 2 (For K0 = 1, it is easy to
1, R show that the use of the first two frequencies rather

than the first frequency by itself will double the result-
where in the above, we assumed that R, and R 2 are ing SNR). As always, IS(K)t are sorted as in Eq. (2).
even symmetric. Also, SNR(Ko) denotes the SNR obtained including

For white noise, we can apply the same idea (in the the first K 0 frequencies in R. There are two cases to be
discrete domain) as in the OPOF case to optimize the considered. The first, is that
SNR in Eq. (8). For a given 0, we define the two
regions SNR(K0 ) - SNR(K 0 - 1). (12)

P=in: IS,(n) co(l > IS,(n) sin(O)I, (9) We now propose to show that in this case SNR (Ko + 1)
>: SNR(Ko), hence implying that both Ko and K0 + 1

P, = In : IS,(n) cos()I -< IS,(n) sin(m)ll. (10) must be included in the optimal region of support. Let

10 July 1990 / Vol. 29, No. 20 / APPLIED OPTICS 2993



h

S= \V i. I). (13)

We will assume from now on that the constant a is
equal to one. This will not affect our optimization
process. Then using Eq. (13) in Eq. (3), we obtain

SNR(K(, + 1) - SNR(Ko)

G3 + _S(K,)])2

K0+ 1 Ko

I -1 --- {K0(IS(K°)I2 + 2#IS(Ko)I) -,621. (14)
K,,(A,J + 1)

Similarly, using Eqs. (3), (12), and (13), we obtain the Fig. 1. The 32 X 32 tank image used in the simulations.
following result:

SNR(Ko) - SNR(Ko - 1)

=-• (0 - IS(Ko)l) 2  B. Algorithm

K,... (K ) -)Below, we list the basic steps of the proposed algo-rithm.

= 1_0'2 + K0 (20IS(Ko)I - 1S(Ko)['2)]/IK 0(Ko - 1)] > 0. (15) Step 1: This normalizes and initializes variables.
the above result, we can obtain the following The signal FT magnitudes IS(n)I are normalized by

Usinge ty: dividing all of them by the largest magnitude.
inequality: Step 2: This step quantizes all IS(n)I values to N

Ko(2flS(K,)1 + IS(K0)12) - 2 >- 0. (16) levels. We also assign tags to frequencies to indicate
which quantization level that frequency belongs to.

If we use Eq. (16) in Eq. (14), we obtain the desired Step 3: This step searches through the N quantiza-
result that SNR(Ko + 1) is larger than SNR(Ko). The tion levels to determine the optimum quantization
second case is that level.

SNR(Ko) < SNR(Ko - 1). (17) Step 4: This step determines the optimal region of
support using the optimal quantization level deter-

In this case, it is not difficult to qee that mined in Step 3.

Ko1, < K0 or KPit - K0 + 1, (18) C. Numerical Results

indicating that either both pixels K 0 and K0 + 1 or none We have implemented and tested this new algo-
of the two are included in the optimal support. When rithm. In our computer simulations, we used the 32 X
we have three or more frequencies with identical mag- 32 pixel gray level tank image shown in Fig. 1. To
nitudes, it is easy to show that either all of them or none compute the OPOF, the tank image is zero padded and
of them are included in the optimal region R. To show a 64 X 64 FFT is performed. For the comparison
this, we apply the above result to all possible pairs of between the old and new algorithms to be fair, we used
frequencies in this set of equal magnitude frequencies. the most efficient sorting technique (HEAP SORT 1 2 ) to
This completes the proof of the proposition. implement the Lid algorithm. Using N = 256 levels,

The above proposition suggests an improved algo- we obtained in 0.13 s the same optimal region of sup-
rithm. Suppose we quantize the magnitudes IS(i)I, i = port we got in 10.15 s with the old algorithm. Thisisa
1, .... ,d into N levels. Then, we do not have to com- reduction in CPU time by a factor of 78. As already
pute the SNR for all d pixels. It is enough to compute mentioned, we expect this facror to increase even fur-
the SNR for the N quantization levels only, knowing ther as the number of frequency pixels increase. To
from the above proposition that pixels with the same test this, we increased the size of the FFT to 128 X 128
quantization level will either all or none be included in and applied our new algorithm with N = 256. It took
the optimal region of support. Hence, we have a new, 0.5 9 to find a region of support made of 235 pixels to
very efficient suboptimal algorithm for the selection of yield a numerically computed SNR (assuming unit
region of support for POF. The efficiency of this new variance white noise) of 76.46116 (= 18.834409 dB).
algorithm stems from the fact that it is, in principle, Using the old algorithm, it took 64.6 s to find the
independent of the number of pixels and depends pri- optimal region of support consisting of 237 pixels to
marily on the number of quantization levels which is yield a numerically computed SNR of 76.46427 (=
expected to be smaller than the number of pixels for 18.834585dB). The new algorithm has now achieved a
practical cases. The suboptimality of this new algo- CPU time reduction factor of almost 130! There is a
rithm is due to the approximation that all pixel magni- small price though. We have given up -- 0.00018 dB in
tudes falling in the same quantization level are equal. SNR. By increasing N from 256 to 400, we obtained
This approximation can be made more accurate by the optimal region of support exactly (i.e., 237 pixels)
increasing N (the number of quantization levels), in practically the same CPU time (0.5 s).
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Before moving to the next section, a final assessment
of the new algorithm is due. It seems that this newly
proposed algorithm has provided us with tremendous
savings in computer time (about 2 orders of magni-
tude) at the expense of a very small loss in SNR (<2 X
10-4 dB). As argued above, we can even get exact
results with a saving of at least 1 order of magnitude in
CPU time (this being a rather conservative number).
It turns out that both the new and old algorithms use
the same memory storage, since the d-dimensional
array that is used in the old algorithm for the sorting
procedure is used in the new algorithm for tagging the
pixels (i.e., to which level each pixel belongs). We
must mention that all the CPU times presented above Fig. 2. The 32 X 32 pliers image used in the simulations.

do not take into account the time to compute the FFT,
get the magnitude of the pixels and normalize them,
and the input/output operations. All these computa- Step 1: Find the partitions Pi and P 2.
tions are common to both algorithms and, hence, will MI = Max1lS,(n)l,n e PJ.
affect both the same way. M2 =Max{tS,(n)I,n e P'1,

M =Max[M1,M2],
IV. Efficient Suboptimal Algorithm for BPOF Design M = 1, ... 4

S(n) - S(n)/M, n = 1,...,..d

A. Analysis Step 2: Quantize IS,(n)l, n c P1 and 1S,(n)[, n e P2.

As in the POF case, we put forth the following propo- Assign tags to the corresponding pixels.
aition:Propoto 2Step 3: Search through an N X N grid to get opti-

Proposition 2: If the real (imaginary) part of two or mal levels L1 and L2.
more pixelsinPI(P2)areequalinabsolutevalue, either Step 4: Get optimal Pi(P 2) by direct comparison
all of them or none of them are included in the optimal with L 1 (L2).
P(P 2 ).

Proof: The proof is similar to that of the corre-
sponding proposition in the previous section. The C. Numerical Results
only difference is that the optimization is now per- We have implemented and tested the above algo-
formed with respect to two variables K, and K 2 rather rithm. Using the same 32 X 32 pixel tank image and a
than with respect to just one variable K0 as in the case 64 X 64 (the tank has been centered) FFT, it took 1585s
of OPOFs. Hence, the only thing that needs to be with the original algorithm to find the optimal region
verified is that by replacing the discrete version of the of support. Optimal R was obtained by trying nine-
SNR expression [given in Eq. (3)] by teen TLAs, from 0 to 90 in increments of 5*. Applying

K 2 the new algorithm with N = 250, it took only 16.8 s to
IS ism + a obtain eighteen of these regions exactly and one region

SNR(K) = 1 (19) within 2 pixels (60 instead of 58 pixels). The CPU
K + b () time reduction factor is .- 95. By increasing N to 400,

where a and b are arbitrary non-negative constants, all the regions were computed correctly in 36.4 s. This

the conclusion of the first part of the proof of proposi- corresponds to a CPU time reduction factor of 44. It

tion in the previous section is unaffected. Namely, it can be seen from here that the computing time of the

can be established in exactly the same way as before new BPOF algorithm is a faster increasing function of

that if [S(Ko)I = IS(Ko + 1)1 for some K 0 > 2 and if N than in the OPOF case. This is a consequence ofthatNR (Ko) = S(K + 1),then ( + searching over a grid rather than along a line.SNR(Ko). Here IS(i)I refers to the appropriate real As before, the CPU time reduction factor becomes

part or the imaginary part of the signal FT. This more significant as the number of pixels increases.compete theprof ofthepropsiton.We increased the FFT size to128 X 128 pixels and
completes the proof of the proposition. focused on the optimal support for the Hartley BPOF

As before, the idea is to quantize pSo(n)i, n e Pi and (TLA = 450). It took 1939 s for the old algorithm to
ISi(n)I,f n6i P2. By virtue of the above proposition, find the optimal region of support; whereas, the new
instead of performing the optimization over the K1 X alndrthm with regi on o9 s toereas theKigridofpixels(Ki(K2 ) isthe total numberof pixels in algorithm with N ff 256 took only 1.98 s to find the
P1 (Pg)), we focus only on a N x N grid (N is the number same answer. This is a time reduction factor of -- 980!of quantization levels). We tested this algorithm using several other images(such as a noncentered tank image, centered and non-

centered pliers image). The centered pliers image is
B. Algorithm shown in Fig. 2. Once again, FFTs of size 64 X 64

Below, we list the basic steps of the efficient subopti- pixels were used. For N = 256, fifty-six out of the
mal algorithm: seventy-seven images tried resulted in exact regions of
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APPENDIX B

Complex ternary matched filters yielding high signal-to-noise
ratios

Fred M. Dickey, MEMBER SPIE Abstract. Complex ternary matched filters (CTMFs) can be implemented
Sandia National Laboratories optically using detour phase and a single ternary spatial light modulator
Albuquerque, New Mexico 87185 or a Mach-Zehnder arrangement and two ternary signal light modulators.

In this paper, we present the design of CTMFs that yield high signal-to-
B. V. K. Vijaya Kumar, MEMBER SPIE noise ratios (SNRs) and show with the help of simulation examples that

Carnegie Mellon University their performance (in the sense of SNRs) is close to that of optimal matched
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CONTENTS 1. INTRODUCTION

I. Introduction Although matched spatial filters originally introduced by
2. Background VanderLugt' provide the highest output signal-to-noise ratio
3. Complex ternary matched filters (SNR), they have not become practical in many applications due
4. Efficient algorithm for support function selection to the complex nature of the spatial filter required. Lately, much
5. Optical implementation research effort has been devoted to methods avoiding the use of

5. 1. Peak bifurcation complex spatial filters. This research has suggested the use of
6. Simulation results phase-only filters (POFs),2-6 binaryphase-only filters (BPOFs),7-'07. Conl~usionls II-5__

8. Acknowledgments ternary-valued spatial filters, and quad-phase-only filters
9. Appendix (QPOFs),14 15 among others. Research effort has also been di-

10. References rected toward the analysis16-20 of the performance of these par-
tial-information filters.
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The SNRs obtainable using BPOFs were bounded17 to be no the filter magnitude is generally less than unity. The second
worse than 6 dlI below the SNRs of POs and were observed12  problem is that most available SLMs cannot accommodate corn-
in numerical exr--riments to be about 4 to 6 dB below the SNRs plex-valued functions. A possible solution to the first problem
obtained using the best P0Ks. FHowever, when compared with is to employ the phase-only filter, given by
the SNR of the classical matched filter, the best BPOF SNRs
were still about 4 to 5 dB lower. In this paper, we propose a Hj•iiaf) = expl-jo,(f)l - (3)
practical way of using ternary SLMs13 to obtain SNRs very close
to those obtained using the classical matched filter. The basic The PO. given in Eq. (3) yields 100% light efficiency and
idea is to use two ternary SLMs, one serving as the real part of produces sharp correlation peaks but suffers from being very
a complex function and the other serving as the imaginary part. sensitive to input noise because of its all-pass nature. Vijaya
These filters can be implemented using a Mach-Zehnder ar- Kumar and Bahri recently 6 introduced the optimal phase-only
rangcment with one ternary SLM in each path. The Mach-Zehnder filter (OPOF) in which they design the POF support function to
approach is conceptually simple. Another means of implemen- obtain the maximum SNR.
tation is the detour phase method in Ref. 15, which requires While the POFs discussed here meet the requirement of higher
only one SLM. As shown earlier for POFs6 and BPOFs,,- it is light efficiency, they still require an SLM capable of representing
necessary to mask out certain spatial frequencies in each BPOF. a continuum of phase values. Since some of the popular SLMs
Thus, both the real part and the imaginary part of this complex can accommodate only two phase levels (0 and -r), much re-
filter can take on three values ( + I, - I, and 0) and hence the search interest7-10 has been focused on binary phase-only filters.
name complex ternary matched filters (CTMF). This paper pre- Early versions of BPOFs employed the binarized versions of
sents the basic analysis of CTIMFs, discusses the optical imple- either the real part or the imaginary part of S(f), and some later
mentation, and presents simulation results to illustrate the ad- versions used the binarization of the Hairtley transform of the
vantages of CTMFs. signal. As in the case of POFs, it was realized that we must

In the next section we provide a brief background-to help set select appropriate support functions12 even for BPOFs. The added
up the notation. Then, Sec. 3 introduces CTMFs and describes constraint of a support function results in the filters' taking on
how the CTMF support function can be selected to yield max- three values (+ 1, 0, - I) rather than just two values. Kast et
imum SNR. An efficient algorithm for designing these optimal al.1 3 showed recently that the magneto-optic SLM (MOSLM)
support functions is presented in Sec. 4. In Sec. 5 we discuss can be configured to yield the three desired transmittance values.
the optical implementation of C1TMFs and discuss some asso- Recently, Dickey and Hansche14 introduced the quad-phase-
ciated issues. The re'suits of our numerical simulations are shown only filter, defined as
in Sec. 6 to illustrate the advantages of the proposed method.

HQpo(f) = sgn[SR(f)l -jsgnlS,(f)i , (4)

2. BACKGROUND where the signal Fourier transform is given by

The problem under consideration is the detection of a "known"
signal/image s(r) in the presence of additive, zero mean, sta- S(f) = SR(f) + jS,(f) (5)
tionary noise n(x). While we will use the I-D notation through-
out for convenience, all of our results are easily generalized to and where sgn[-] is defined as
higher dimensions. It is common knowledge that the matched
filter provides the highest SNR for this problem. The SNR is +
defined as sgnlxl = -+1 ,ifx0 (6)

SNR = e CE ( O}
vS- 00)' (I) The advantage of using the QPOF in Eq. (4) compared to the

use of a BPOF is that (in some sense) we are encoding both the
where C(0) denotes the filter output at x = 0 and E{.} and var{-} real part and the imaginary part of the matched filter. Dickey
denote the ensemble average and variance, respectively. This and Hansche14 show that the SNRs obtainable from QPOFs can,
SNR measure characterizes the sensitivity of the filter to noise in some cases, be 3 dB more than those from the BPOFs de-
in the input image. The linear invariant filter that maximizes the signed from Hartley transforms. They also show that the QPOFs
above SNR is given by can be implemented using two binary SLMs in a Mach-Zehnder

arrangement or by using one SLM and the method f detour

S*(f) PS(f)0 expf -j (f)l (2) phase. '5

3. COMPLEX TERNARY MATCHED FILTERS
where a is an arbitrary complex constant, P.(f) is the noise An obvious improvement to the quad-phase filters discussed in
power spectral density, S(f) is the Fourier transform (F1) of Sec. 2 is the CTMF:
the reference signal s(x), and IS(f)l and 0,f) denote its mag-
nitude and phase, respectively. For white noise, P.(f) is a HcrmF(f) = il[H,(f) - jH2(f)l , (7)
constant independent off and the matched filter has a transfer
function equal to ctS*(f). where both HI(f) and H2(f) are ternary filters, i.e., they tak-

It can be easily seen from Eq (2) that the matched filter is on values + I, 0, or - I. The arbitrary complex constant -1 does
complex valued. This poses two problems. The first problem is not affect SNRs and will be taken as I without any loss of
that the light throughput efficiency 2' of this filter is low because generality from now on. Note that we are not assuming a priori
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that HII(f) is obtained by binarizing SR(f) and that 112(f) is f
obtained by binarizing SI(f). In this section, we show that the I(- = 1 SR(f)PHI(f) + A)1(f)1 fd, (I I)

best choices for HI(f) and HAP) are indeed obtained by bi-
narizing SR(f) and S,(f) (or some linear combination of these where SR(f) = ReIS(f)exp( -j1f)l and •I(f) = ImIS(f)
two) once the support functions are fixed. exp( -j13). Clearly. to maximize Eq. ( I I ) we must choose

Let us denote by Ri the region of spatial frequencies for which
H,(f) is nonzero, i.e., takes on values + I and - I. When the fsgnl.;R(f)l , fC-R,
CTMF of Eq. (7) is used in a correlator, there is no guarantee Hi() 0 , otherwise (12)

thai the correlation output has its maximum value at the origin. 16

However, we consider the output SNR at the origin for our _sgnriý(f)l , fER 2  (13)
maximization for the following reasons: First, the resultant SNR H2(f) [0 , otherwise
expression is analytically tractable. Second, the peak will be
very close to the origin even though it may not be exactly at the Thus, we can rewrite the CrMF yielding the highest SNR as
origin. Third, if the correlation peak is not at the origin, then
the origin SNR estimates will be conservative, and optimizing HcM-rF(f) = IR,(f)sgnlSR(f)l - jIR,(f)sgn1S1(f)l
these can only imply even higher SNR value somewhere else in
the correlation plane. The position of the correlation peak with = iR,(f)sgnlSR(f)cosl3 + Si(f)sinl3l
respect to the origin is determinable and should not be a problem -j1R,(f)sgn[ -SR(f)sinl3 + Si(f)cosl3l (14)
for tracking. The origin SNR of Eq. (1) can be written as

2 where support functions IR, are I forf contained in Ri and 0 for
i S(f)H(f)df f not in Ri. When 03 is 0 in Eq. (14), HI(f) binarizes SR(f)

and HA2(P) binarizes S1(f).
SNK-rMiH =,i2 Let the optimal CTMF Imaximizing JCI in Eq. ( 11)) result in

P"(-)f)idf a correlation output phase of P". The proof of the optimality of
H,3.(f) is provided in the appendix, where we show that HI(f)

2 and H2(f) in Eqs. (12) and (13) result in phase 13* when sub-
JS(f)H(f)dfJ stituted in Eq. (9). That is, the equations are consistent for the

phase angle of the optimal CTMF. For any other 03 (not corre-
fp,,(f)H(f) + d sponding to the maximum), the filter defined by Eqs. (12) and

Zu + (13) may not result in phase 03 in Eq. (9). In this case, it can

be shown that Eq. (II) is just the real part of the correlation
d2 response, which is less than or equal to the magnitude of the

JS(f)[H,(f) - JH(f)ldI correlation response. Thus, our search for optimal CTMFs can
be constrained to filters of the form in Eqs. (12) and (13).

(8) The SNR of the CTMF can be obtained from Eqs. (8), (9),
,P,,(f )df + L2 P" (f)df (I1), and (14) in the form

( 2

Note that the denominator of the SNR expression in Eq. (8) is J[IRI(f)ISR(f),+ IRA(f)IS,(f)lidfl
fixed once support regions RI and R 2 are fixed. Let us now '- I (15)
assume that RI and R2 are fixed and determine the signs of HI(f) SNRCTMF + f (15)
and H2(f) to maximize the numerator of the SNR expression.jP'(f)lis(f) +/aR(f)Jdf
Toward this end, let us denote the complex value resulting from
the integral in the numerator in Eq. (8) as IClexp(jP), i.e., It should be noted that the SNR given by Eq. (15) is a function

of P and the support function IR, and IR,. The problem of op-

f )(H(f - j(f)Jdf = CXP(j0) - ( timizing the SNR is then one of searching over the range of
s( admissible 0 and support regions.

To determine the H(f) = H,(f) - jH2(f) that maximizes
Thus, for a given S(f), every possible filter H(f) has an as- the SNR in Eq. (8), we can proceed as follows: (1) For each P,
sociated P, the phase of the correlation output at the origin. find the H (f) = H (f) -jH 2(f)thatmaxinizesI CinEq. (II).
Thus, maximizing the numerator of Eq. (8) is equivalent to Let IC(f3)|be the resulting maximal value. (2) Determine the P3*
maximizing IC1, given as that maximizes IC(0)I. The filter function Hp.(f) then maxi-

mizes the SNR in Eq. (8).
IC1 = JH(f)S(f)exp(-.0)df Further, the integrand in the numerator of Eq. (15) can be

written as
0 R,ISRcosP + Sisin~l + 1,R,1-SRsin(3 + ScosJI

where 1H(f1)l and IS(f)l denote the magnitudes of H(f) and I ( V*\ ( )&"
S(f) and - OA(f) and 0,(f) denote their phases. Since ICI is = lJR.scoso + S,sinol( + I', Sjcos 13 + 2 + Ssin + -)1.
real, the imaginary terms on the right-hand side of Eq. (10)
cancel out. Equation (10) can thus be written as (16)
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It can be seen from this equation that the range 0 - fl < ir/2 NPUT

covers all possible values of the numerator in Eq. (15). There- - tAGE St_

fore, the search need only consider this range of values for 13. T _4 -S

The maximization of Eq. (15) for general noise spectra can MOSL%

be quite involved. For this reason, we treat the practical and
commonly used case of while noise. For white noise P,(f) =

No, and Eq. (15) becomes CORRELATION
MOSLNIPLANE

{f IIRs)iR(•fI + IR (f)i•,f)ildfl - -
SNRcrmi- 

. (17)

NoflJ,(f) + IR,(f)Jdf Fig. 1. Mach-Zehnder realization of the CTMF.

We now describe an efficient algorithm to determine the optimal Once K is determined, the CTMF is uniquely determined
regions of support for fixed 13. A search over 13 completes the because Ki and K2 can be determined from the sorted list in
optimization of Eq. (17). Eq. (19). The real part Hi(f) will be equal to sgn[SR(f)J for

the spatial frequencies with the KI highest ISR(i)j values and
4. EFFICIENT ALGORITHM FOR SUPPORT H 2(f) will be equal to sgn[S,(f)] for the frequencies with the
FUNCTION SELECTION K 2 highest ISi(i)I values.

In this section we describe an efficient algorithm to select the
support functions IR. and IR2 to maximize SNRcrMF in Eq. (17). 5. OPTICAL IMPLEMENTATION -
To enable the use of a digital computer, we discretize the The CTMF of Eq. (7) can be implemented using the architectures
SNR(rMF expression as suggested earlier,. 4 ".5 for the QPOF. We show the more illus-

[ 12 trative Mach-Zehnder architecture in Fig. I schematically. This

AIS ,(i)f + J, Is,(J)l] is basically a two-path system. In each path, we do spatial
SNRK-=m + 2  (18) filtering using a magneto-optic spatial light modulator. The

No(K, + K2) MOSLM in the top path implements Ha(f), whereas the one in
where a is a constant.that depends on the sampling interval Af, the bottom path implements H 2 (f). We can obtain the CTMF
Ki denotes the number of samples in Ri, i = 1,2, and SR(i) and Hi(f) - jH2(f) either by placing a 90* phase shifter in the

SA(j) in Eq. (18) correspond to SR(i4f) and S&(jAf). The con- bottom path or by making sure that the two paths differ in their

stant ct does not affect the selection of the best R1 and R2. length by X/4, where X is the wavelength of the coherent source.

Note that the denominator of Eq. (18) depends only on the The light waveforms from the two paths are then interfero-

areas Ki and K2 of the support functions and not on which metrically detected to yield the output correlation. Other types

particular frequencies are included in R, and R2. Thus, for a of filters can be obtained by using the path length difference and

given Ku and K2qwe must include the K n(K + K2) highest the fraction of light in the two legs as additional degrees of

values among In and K2 for I -_ i t N. Using these, we freedom. We can replace the two paths in Fig. I by a single

can find the highest possible SNR for given K. Then we vary path if we can get a SLM capable of yielding nine ,possible

K over hllpossighevaluest po dssi le ct the forgent K. Tewcomplex transmittances (0, 1, - 1, j, -j, I +j, I -j, - I +j,
Let all possible values and select the best SNRCrMF. and - I -j). However, this is not possible with real-time de-Let S(i) SR(i) + jtSf(i), I *r i N, denote the N-point vices. The detour phase method, discussed in detail in Ref. 15,

discrete Fourier transform (DFT). Then the following algorithm can be used to implement the CTMF in a single device. In this
outlines the basic steps in identifying the optimal support func- approach, alternate MOSLM elements (in one dimension) are
tions R, and R2. used to represent SR and 5,, respectively, with a corresponding

Step ). Sort IR(i)l and IS(i)I values as loss in space-bandwidth product. The detour phase implemen-
tation is mechanically simpler and more stable. ' 5

5.1. Peak bifurcation

where jSýj denotes the ith largest value among ISR(i)A and A problem often noticed9 in the use of BPOFs is that the cor-

G,(i)I for I _- i -< N. relation outputs had two peaks instead of one. Such extraneous
peaks must be eliminated before we can use the correlator for

Step 2. Compute the following running sum: target location. Some explanations for this phenomenon of "dou-

X ble peaks" have been put forth and methods have have been
R(K) = , . (20) proposed for its reduction. 17.22 We believe"'23 that the reason= for producing double peaks with BPOFs is the following. When

designing BPOFs, we must first convert the complex matched
Step 3. Increment K from I to 2N in steps of I Then filterSR(f) -jS,(f)into a real function [cospSR(f) + sinoS,(f)]

before binarizing it to obtain a BPOF. Here 13 refers to the
SNRMx(K) R Nk- (21) threshold line angle available as a variable in BPOF design. 34

NoK This conversion of complex functions to real functions imposes
an artificial symmetry on the impulse response of the BPOF that

Step 4. Determine the best SNRMAx(K) over all K. can cause the peak bifurcation in the correlation plane. On the
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(4) (b)

Fig 2. 32 x 32 tank image used in the sirf- Fig. 3. Support functions (over 64 x 64 arrays) for sgn[SR( M)] and sgn(S,( f)] obtained foe fI
ulations. = 0 CTMF. Black is opaque; white is transparent: (a) Imaginary mast. (b) real mask.

TABLE I. Output SNRs from various filters.

I r~put

.0R Mtat ched
( dB) Ft ' 011W ,OBOF- Re 01RfP0F- I".. hiP)F- Im OBf'OF- 1M ()I'()F C 'IJ

-20 10.16 5 69 9.31 4.11 1 61 0 5.15 5 4', 8. l,

-10 20.64 14.77 19.28 12 23 11.4? 10.6. 115.11 14.62 18 61

0 30.60 24./13 29.02 22 07 27.2/, 20.76 25.11 24.59 28, 3

10 40.59 34. 72 38.98 32.02 31.15 30. 79 35. 10 34. 58 38.64

20 50.58 44-2 48.92 42.00 47.27 40.81 45.10 44.57 48.63

oici hand, tihe ('FMF proposed here retains the complex nature responds to the (0,0) spatial frequency. Note froim Fig. 3 that
of the oritinal matched filtcr and will break the simple symmetry mostly low spatial frequencies (which have most signal energy)
of the ItPOF. Thus, we do not expect to see double peaks in are being allowed through. This can cause two problems. First,
the correlation plane. We must, however, caution that the filter the resulting light efficiency wll be reduced. However, since
function can have higher-order symmetries, the open regions in the frequency planes correspond to regions

in which the signal has most energy, the reduction should not
6. SIMIILATION RESULTS be too great. Second, this filter may not do a good job of dis-
We carried out computer simulations to investigate the advan- critnination because signal high frequencies are being totally
tagcs of using CTMFs. As the reference image of interest, we suppressed. However, once we realize that CTMF was designed
chose the tank image shown in Fig. 2. This image is of size to yield the highest SNR, we must accept the deficiencies that
32 x 32, with each pixel having 8 hits of gray-scale resolution. come with the best SNR. However, if best discrimination be
This image was placed in a 64 x 64 array prior to carrying out tween two signals SI(x) and S2(A) is of interest, we must match
a 64 ) (A fast Fourier transform (OFT) to determine 1,SR(K)1 and our filter to S(x) = I,(.) - S2(0x) and investigate its discrini

1S,(K)I values for I -< K -- 642. The origin of the 64 x 64 array inalion perforniancc.
was made to coincide with the centroid of the image in Fig. 2 To investigate the sensitivity of (,fMl[ to noise in the input,
so that the reference image is centered at the origin. We used we added zero-mean, white Gaussian noise of variance o' to
zero padding rather than padding by average value as was done the reference image. This noise was generated using standard
elsewhere 24 since we want to get linear correlation, not circular random number generators. Since the input image of sue 32 x 32
corrcLiaon. The image energy is normalized to I and has 00.26'7? has a total energy of I, each pixel on the average has energy
of this energy in the even part and the remaining 39 74% in c×dd (1/1024). When the noise pixels have a variance of r, the input
part. SNR is defined as

The efficient algorithm outlined in Sec 5 was then applied 'SNR t0to) (-, (21
to the (A x 04 array obtained after the HIf was carried out. The NI()24r (24)
optimal suppo•rt functions obtained for sgniJS(f )1 and snlS/(J )]
are shown in Frg 3 for P3 0. iHere, the transparent regiow, In I able 1, we show the output SNRs, obtained using various
indicate the spatial frequencies for which the filters are 'lon/cro. fitltrs, for live different input SNR values. Tie output SNRs
Thes' figtircs are plotted sch ithat thie center of the array ci• wcre ralculated by collccriri•g the correlatio oulnupul values (at

J'" , (, '"Tl1At I N(INIf W 1INI , , 10( V:; 214 No '1
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TABLE Il. CTMF output SNRs as a function of 18 (input SNR =
0 dB).

0 (deg.) SNR (dB) f (deg.) SNR (dB)
0 28.6350 28.7

0 28.63 50 28.75
5 28.65 55 28.69

10 28.69 60 28.63
15 28.70 65 28.52
20 28.55 70 28.55
25 28.52 75 28.70
30 28.63 80 28.69
35 28.69 85 28.65
40 28.75 90 28.63
45 28.81

the origin) for 200 noise realizations with the same variance. (
The output SNR is then given as the ratio of the average of the
200 values to their standard deviation.

In Tahle I we list the output SNRs obtained using the matched
filter, the conventional phase-only filter, the optimal phase-only
filter, optimized and unoptimized binary phase-only filters (BPOFs)
using the real part as well as the imaginary part of S(f), the
quad-phase-only filter, and the proposed complex ternary matched
filter with P - 0. Obviously, the MF provides the highest output
SNRs among all of the filters. Also, there is a 10 dB improve-
ment in the output SNR for all filters with a 10 dB improvement
in the input SNR. These results indicate a processing gain of
about 30 dB for the matched filter. This agrees with the fact that
the image has unit energy and noise variance of (1/1024) (for
SNRIN = 0 dB), which should result in an output SNR of I/
(1/1024) = 1024 or about 30 dB.

The conventional POF provides output SNRs about 5 to 6 dB
lower than those of the matched filter, whereas the optimized
POF yields SNRs about 1.5 dB below those of the matched
filter. Between the two BPOFs, the BPOF using the real part
performs better, perhaps due to the fact that the signal has more
energy in its even part than in its odd part. Note that the optimizedBPOF using the real part yields output SNRs about 4 to 5 dB Fg. 4. Complete normalized (peak value set to 1164 x64 correlation

outputs for no noise in the input. (a) Matched filter; (b) conventional
below those of the MF. The QPOF results in output SNRs about POF, (c) CTMF.
6 dB below those of the MF. Finally, the CTMF (for 03 = 0)
proposed in this paper yields SNRs about 2 dB below those of
the matched filter. Thus, the SNRs obtainable from a CTMF plane. All correlation peaks are normalized to the same height
(which requires two binary SLMs) seem to be very close to the in these plots since the absolute values are not important. Note
SNRs obtainable from optimal POFs (which require a SLM that the conventional POF yields the sharpest correlation peaks,
capable of accommodating a continuum of phase values), whereas the CTMF yields correlation peaks that are broad. In

The algorithm was next used to compute the output SNR for Fig. 5, we show the three correlation plots when the input SNR
increments of 03 of 50 and an input SNR of 0 dB. The results is C 4B. The conventional POF exhibits most variation in the
are presented in Table I1. From the table, it can be seen that the correlation plane, whereas the CTMF seems to achieve tolerance
maximum SNR is obtained for 03 = 450. However, the peak to input noise by allowing for broad correlation peaks. Also,
value exceeds that for 13 = 0, the natural binarization, by only no,.-e that there are no double peaks in the output correlation
0.18 dB in this case. We expect that the 13 = 0 binarization plane ,,;-n we use the CTMF. To contrast this, we show in
will generally give near-optimum SNRs for real object functions. Fig. 6 the t-. '-ut correlation when the filter is the optimized
It should be noted that as discussed following Eq. (14), Eqs. BPOF (from the .... fyinary part) and when there is no input
(12) and (13) define a filter for arbitrary 13 and the numerator of noi.. Thi', clearly displays two equally high correlation peaks.
Eq. (15) is just the real part of the filter response. Thus, the These simulations have clearly demonstrated the advantages of
values in Table II are conservative and the maximum value is the CTMF.
the actual value of the optimal filter response.

The SNRs discussed so far are concerned with only one point 7. CONCLUSIONS
in the correlation plane (namely, its origin). In Fig. 4, we show In this paper, A, introduced a new spatial filter, the complex
the output correlation planes (of size 64 x 64) obtained using ternary matched filter, and presented the theoretical analysis
MFs. POFs, and CTMFs when there is no noise in the input required for maximizing its output signal-to-noise ratio. We also
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Fig. 6. Complete normalized 64 x 64 correlation output when there
is no input noise and filter is an optimized imaginary part BPOF.

9. APPENDIX

For fixed R, and R2 , the denominator of the SNR expression in
Eq. (8) is unaffected by the choice of H(f) = Hi(f) - jH 2(f).
Thus, we focus only on maximizing the numerator, or equiva-
lently, the expression for ICJ in Eq. (1I). Let P3" correspond to
the filter H;(f) that maximizes fC(1P) and let the resulting max-
imum be IC(P*)I. Then,

KtI3)I f lSý..R(f)Hp-.I(f) + Sp.,{f)Hp. 2(f)ldf ,(Al1)

where the subscripts 13* are included to denote the explicit de-
pendence of S(f) and Hý(f) on it. It is obvious from Eqs. (12)
and (13) that the following filters maximize the right-hand side
of Eq. (A I):

HIMf) = sgn[ 013.R(f)] , forfER, (A2)
1) = 0 , otherwise , 

I

Cme sgn[Sl9.(f)! , forfER2 ,
Rg. 5. Complete normalized 64x64 correlation outputs for input H2(f) = 0 otherwis (A3)SNR = 0 dB. (a) Matched filter; (b) conventional POF;,, (c) CTMF. I

For the filters in Eqs. (A2) and (A3) to be valid, optimal choices,
presented an efficient algorithm for determining the CTMF re- we must verify that they result in angle 13* when substituted in
gions of support that lead to the best output SNR. With the help Eq. (9). To prove that this is true, let us assume that the filters
of simulation examples, we have shown that for the particular result in angle 13i * 15* when we use Eq. (9). Let A = 13, -
case studied, the CTMF yields SNRs that are within 2 dB of the 13* and note that, by definition,
SNRs provided by the matched filter. Also, the CTMF does not
exhibit symmetry effects such as double peaking. IA

Based on this, wi believe that the CTMF provides a practical Re[exp(- ..J*) j S(f)Hp_.(f)df] = 1C03), (A4)
method for obtaining SNRs close to those of the matched filters
while using only ternary programmable spatial light modulators exp( -j*) S(f)Hpi(f)df =Cjexp(+jA) (A5)
in the filter plane. While it may be of theoretical interest to go f
beyond using two binary SLMs, we feel that our results indicate
that the CTMFs offer very close to the best performance ob-
tainable and thus any additional improvements may not warrant The left-hand side of Eq. (A4) is the real part of the complex
the complexity. quantity in the left-hand side of Eq. (AS). Thus, if A * 0, we

have
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An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only
filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in
the sig al-to-noise ratio sense. It extends earlier research that assumed white noise.

In signal detection in the presence of additive noise, known as the region of support (ROS). We have pre-
using any known spectral characteristics of the noise viously derived algorithms to determine the optimal
is important. It is not enough to have a large re- ROS's (in the sense of maximizing the SNR with
sponse to the signal, if that sole criterion produces a white noise) for POF's,5 BPOF's,6 and a modification
large response to noise also. In this Letter we will of quad POF's that we call the complex ternary
consider the signal-to-noise ratio (SNR) as the mea- matched filters7 (CTMF's). In this Letter we derive
sure to be optimized. We explicity accommodate algorithms for determining the optimal ROS's when
colored noise in the filter design. the noise is colored.

A practical filter must have a physical implemen- We will use one-dimensional notation for conve-
tation, and the available spatial light modulators nience. However, all our results can be easily gen-
(SLM's) are restricted in the complex transmittances eralized to higher dimensions. Let s(x) denote the
that they can express, In that context filter opti- target signal and let n(x) be a sample realization
mization is then done with the knowledge of noise from a zero-mean noise process. Then the input
spectrum, signal spectrum, and the operational signal is assumed to be given by s(x) + n(x). Let
limitations of the SLM. Some subsets of the global S(u) be the one-dimensional Fourier transform of
problem have been explored. For example, without s(x) and let H(u) denote the filter being used in the
regard to SLM limitations and if the noise is white, frequency plane of the optical correlator. Since the
the classical matched filter' is known to optimize input s(x) is centered, we assume that the output
the SNR. However, this filter requires the use of a peak will appear at the origin, and We will denote
complex-valued transmittance in the filter plane, al- this as c(O). Strictly speaking, the -correlation is
though extant programmable SLM's do not access guaranteed to peak at the origin only for (POF's) and
full regions in the complex plane. classical matched filters for which the filter phase

There has been growing interest in replacing clas- completely cancels the phase of the Fourier trans-
sical matched filters by partial information filters form of s(x). For BPOF's and CTMF's, the phases
that are less demanding of the SLM. For the most do not necessarily cancel, and the peak may not be at
part they have not taken noise into account (whether the origin. In such cases the SNR defined below is
white or nonwhite). They have instead concentrated smaller than the maximum possible:
on the SLM limitations. Primary examples include SNR = IE[C(O)]j 2/varfc(O)]
phase-only filters2 (POF's), binary POF's3 (BPOF's),
and quad POF's.4  Since these filters are essentially 12 12/f
all pass filters, all the input noise comes through = S(u)H(u)du f P.(u)IH(u)Idu, (1)
unattenuated, thus deteriorating the output SNR.

Recently we have begun to optimize filters with where E[] and var[-] denote the expected value and
respect to additive input noise, in the general context the variance and P,(u) denotes the power spectral
of SLM's that are limited to expressing the filters of density of the noise. When a ROS R is included in
Refs. 2-4. We suggested that, by making the filter H(u), we can rewrite the SNR as
magnitude zero at some spatial frequencies, we can 12 / .-
significantly improve the SNR. The set of frequen- SNR = S(u)H(u)du P,(u)tH(u)j2du. (2)
cies for which the filter magnitude is not zero is R

0146-9592[91/131025-03$5.00/0 C 1991 Optical Society of America
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We ,e previouslyl 7 considered the case of white of Eq. (8). %Ae will need to test at most 4096
noise i ,.,u) is a constant] and showed how R can be thresholds in this example. Usually, we will need
determined to maximize SNR. Recently Flannery' fewer than 4096 thresholds. Suppose that we use
proposed a heuristic, iterative method for choosingR eight bits to represent the ratios S,'/11,,,, =
to maximize SNR when P,,(u) is not a constant. In 1,2,...,4096. Then we need to test only 256
this Letter we will derive a rigorous, noniterative al- thresholds since there are only 256 different ratios
gorithm to determine optimal R (with the under- possible. If we use more bits for representing these
standing that, for BPOF's and CTMF's, the SNR at ratios, we will need more thresholds.
the origin is not necessarily the highest SNR in the Similar results can be derived for BPOF's and
correlation plane) for the three types of filter (POE CTMF's also. The 13POF with a ROS is really
BPOF, and CTMF). a three-valued filter. It has been shown else-

First, let us consider POF's. It is straightforward where"' that the optimal BPOF must be of the follow-
to show that H(u) must equal exp[-jo(u)] for all u in ing form:
R, where PS(u)I and 0(u) are the magnitude and the
phase, respectively, of S(u). Using this in Eq. (2), we H(u) = it CR (9)
can write the maximum SNR obtainable from a/O u i R
POF as

where sgn[x] is +1 ifx > 0,-I ifx < 0, and 0 ifx x

SNRpoF(R) [s~u~ldu /Pýu[du. (3) 0. Also SOR(u) is the real part of

S oR So(u) = S(u)e-". (10)

In order to carry out the ROS selection on a digital The f3 in Eq. (10) is the same as the phase of the
computer, we discretize the above expression as complex c(0) at the origin of the correlation. The

resulting SNR is given as follows:
SN~i()= I !SkIJ/ YP., (4) ]2/~d 'fP'

(ER keR SNRBpoF(R) = P,(u)du. (11)

where Sk = S(kAu) and PA, = P,(kAu) with Au being [ fR

the sampling interval. Also, we have omitted some Comparing Eq. (11) with Eq. (3), we see that they are
constant terms in Eq. (4) because they do not affect similar. Thus, using ISpR(u)j in place of IS(u)l in the
the selection of the optimal ROS. For colored noise, algorithm presented above, we can obtain the opti-
the following theorem proved elsewhere 9 becomes mum ROS. However, unlike the POF case, this
useful for the determination of the optimal R: must be repeated for all 83 values (in the range 0-

Theorem: Let xi,y, > 0 for i = 1,2,...,N. Let 7r/2), and the best SNRBpOF(R) must be used. It can
R denote a subset of integers {1, 2,..., N}. Let the be shown7 that the resulting BPOF does indeed pro-
subscripts be such that duce a consistent correlation phase at the output.

z, = x,/y,, i = 1, 2,..., N (5) Finally, we consider CTMF's defined as

form a descending sequence; i.e., HCTMr(U) = H(U) - jH2(u), (12)
Z2  Z3 a ... a ZN> 0.( where both HA(u) and H2(u) can take on three values

- -z>0. (6) (+1,0,and -1). The optimal CTMF is given7 by

Then, if an integer n is included in the optimal sub- Sn[SPRgn u E Ri
set R* maximizing the ratio II,(u) = [0 u i R, (13)

77(R) = I ) y,, (7) =sgn[Spt(u)] u C R 2
ER H2(u) = u 4zR2  (14)

all integers k <_ n must also be included in R*. Here SoR(u) and Sp,(u) are the real part and the
Comparing Eqs. (4) and (7), we see that -q(R) = imaginary part, respectively, of Sp(u) defined in

SNRPOF(R) if x, = oStm and y, = Po . This suggests Eq. (10). Note also that the CTMF is characterized
that the optimal ROS must be of the following form: by two ROS's, Ri for the real part and R 2 for the

RPOF = {i:(ISjj/P,) - T}, (8) imaginary part. The resulting SNR is given as
follows:

where T is a threshold to be determined. We will
explain the resulting algorithm with the help of an SNRcTMr(Ri, R2 ,)
example Suppose that we perform a 64 x 64 fast [

Fourier transform on the reference image in order to IS 0Rq(u)jdu + JS#Au)ldu
obtain 4096 IS,[ values. Then we divide these by L fR, • (15)
4096 P,, values. These 4096 ratios are then sorted. r +
Different thresholds T are used, the resulting R*oFjP,(u)du +R jP(u)du
and SNRpor are computed, and the highest SNR
among these is selected to yield R*. Our theorem It may not be obvious initially how Eq. (15) can be
above proves that the optimal R must be of the form made to look like Eq. (7). However, it is possible.
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Most previuýu research into the design of correlation filters considered only input noise and filter spatial light
modulators (SLM's) of an implicitly assumed infinite contrast ratio. We introduce a signal-to-noise ratio that
also includes correlation-detector noise and finite contrast SLM's. Filters maximizing this signal-to-noise
ratio exhibit saturation at some frequencies and are called saturated filters. We accommodate SLM's whose
amplitude has a finite maximum and a nonzero minimum. We give algorithms for optimum saturated complex-
and real-valued filters. Previous results a:e reproduced as various limiting cases. The phase-only filter
and the binary phase-only filter are limiting cases for large detector noise with, respectively, complex and real
modulator..

1. INTRODUCTION consider the maximum transmittance as unity; this will
have no effect, of course, on the zero at the other end of

Noise i- always present in the correlation-detection pro- the control range. In reality, programmable SLM's have
cess, even if its major component is no more than the finite dynamic range, so there is a finite minimum trans-
quantization of the detected correlation. Nonetheless, mittance. The practical effect is that all the frequency
there is little to be founi in the literature regarding the plane passes notse that is additive in the input plane,
effects of that detection noise on the performance of an if only at that minimum transmittance. The effect on
optical correlator. All else being equivalent and if all the SNR is obviously detrimenta. We include mini-
noise were additive in the input plane, multiplying the fil- mum transmittance when calculating optimum saturated
ter by a constant would have no effect on the relative filters.
amounts of signal and noise in the correlation plane. (We A phase-only filter (POF) is fully saturated ab initio.
will say that filters have the same shape if they differ The POF was introduced by Homer and Gianino' to im-
from each other only by a possibly complex constant fac- prove the light-throughput efficiency of classical matched
tor. The magnitude of that factor will be called their rela- filters. However, the all-pass nature of-the conventional
tive size.) Increasing the size of a filter seems likely to POF's results in extreme noise sensitivity.2 One way to
produce an improvement in the detected correlation. improve the noise tolerance is to set the filter magnitude
Thus it is common practice in optical-filter computation at select frequencies to zero. An algorithm for determin-
to scale a calculated filter so that its maximum magnitude ing the region of support (i.e., the set of frequencies for
is just at the saturation level. (We will say that a filter is which the filter magnitude is nonzero) for these optimal
saturated if magnitude limitations have changed the POF's was presented by Vijaya Kumar and Bahri for con-
shape of the filter.) The shape of the marginally satu- tinuous' and binarized' POF's with additive white input
rated filter is not modified; and if there is no detection noise. More recently, we presented theory' and simula-
noise, the signal-to-noise ratio (SNR) is not affected. In tion,' including additive colored input noise, in determin-
the presence of detector noise, though, the SNR can be ing the optimal regions of support for POF's, binary
improved on by getting an increase in the power to the POF's, and complex ternary matched filters.7 For simple
correlation detector. The price is a loss of spectral detection problems, (i.e., when we need to detect the pres-
matching between the filter and the signal. We adapt our ence or absence of a known reference signal in additive
metric of filter optimization to include the noise in corre- noise), the POF optimal region of support was observed
lation detection, and we quantitatively balance the loss of typically to consist of mostly low spatial frequencies.
signal-detection selectivity with the increase in power to Such small areas of suppor' end up blocking much of the
the correlation detector. light that is incident upon the frequency plane, thus lead-

An ideal passive-filter spatial light modulator (SLM) ing once again to a low level of light throughput. Owing
would be controllable so as to transmit any specified mag- to the optimal POF's passing predominantly low frequen-
nitude between zero and unity. In this paper we scale the cies when recognizing objects containing high frequen-
noise in the correlation-detection plane so that we may cies, the correlation peak typically is broad
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Low light throughput is not an :,-ue if the detectors
placed in the correlation-output plane have zero noise and 1ri, f) 1h f 1 ̀ df. 1i

or arbitrarily large gain. When detectors have limited
gain and introduce noise. we must ensure that we send as When the input to the correlator is only noise nix, the
much light to the detector as possible while providing tol- output iOl) will be a random variable with mean g,1i
erance to noise in the input scene. For the already satu- and the same v:iriance as in Eq (3t. For good detection.
rated POF's, this necessitates increasing the area of the we need to separate the two means as much as possible
region of support beyond what is the optimal choice from while keeping the variance small. A convenient measure

solely an input-noise-tolerance consideration. For other for this is the SNR that is defined below, and we will
filters (complex.' real, coupled"") that take on zero val- shortly present our motivation for using it:
ues without separate consideration of a region of support,
the equivalent is to drive more of their area into satura-
tion In those actions the spectral shape of the filter is f S(f)H(f)d

changed, with an adverse effect on the SNR if only the SNR (4)
input noise is considered. In this paper we will discuss | Pý(f)IH(f)12df

making the trade-off between tolerance to input noise and
tolerance to detector noise. We explicitly include the fact
that a minimum exists for the realized filter amplitude, In the past, optimal choices of H(f) [in the sense of maxi-

which also changes the shape of the filter from the calcu- mizing the SNR in Eq. (4)] have been found within the

lated ideal. constraint that the filter be phase only? binary phase

The rest of this paper is organized as follows. In ordy,' or real.9 Since a constant factor times the magni-

Section 2 we introduce a simple SNR model that includes tude of H does not affect the SNR in Eq. (4), these opti-

detector-noise effects. In Section 3 we derive analytical mizations did not consider the finite nature of modulator

expressions for the optimal filters. We show algorithms amplitude. The numerator has been maximized if mag-

for calculating the filters, including for determining the nitude and phase are cross coupled.""

portions that are driven into either high or low saturation. When the correlation output c(O) is detected by a

In Section 4 we show the limiting forms of the filters for photodetector, several things happen. Detectors respond

arbitrarily large and small noise and for arbitrarily large only to Ic:,, thus ignoring all phase information. Also, the

and small contrast ratio. Section 5 is a discussion. We detectors introduce a gain and some noise. An accurate

do not present numerical simulations, since we show ana- model for detector noise is complicated and must include

lytically that our filters are optimal with respect to our the signal-dependent nature of detector noise. Instead,

stated measure of the SNR and because the SNR benefits we use the following simple model for y, the detector

of the saturation will vary from case to case. Our al- output:

gorithms will permit an investigator to determine any
benefit for his own situation. y = c(0) + nd. (5)

2. DETECTOR NOISE IN In this detector-noise model, we assumed that the de-
2.IDE CTOR-NOISE RTIN tector gain is unity and that the detector noise nd is addi-
SIGNAL-TO-NOISE RATIO tive, without loss of generality. The noise nd is assumed

Let s(x) denote the reference image (we will use one- to have mean Ad and vrix.nce od.. We assume that the
dimensional notation for simplicity), and let S(f) denote detector-noise characte,.istics have included within them

its Fourier transform. Let H(f) denote the complex the scale factors !hat are appropriate to the correlator
transmittance of the filter placed in the frequency plane whose optimal filter is being calculated. For example, the
of a frequency-plane correlator. In the absence of input power of the correlator's coherent light source might di-

noise, the resulting correlation output at the origin is rectly multiply the amplitude of the encoded signal trans-

given by form, so that increasing the light source power would

increase the SNR if ad' included only local detector noise.

60) f S(f)H(f)df, (1) Instead of treating those considerations explicitly, we

wrap them into the definition of detector noise.

where the limits of integration are those implied by the The additive-detector-noise assumption is somewhat

bandwidths of S(f) or H(f) (whichever leads to the tighter questionable. However, it makes the analysis tractable

limit). These implicit integration limits will be observed and helps us to illustrate our main point (i.e., that we

throughout the paper. must trade off input-noise tolerance for detector-noise

A model for possible uncertainties in the input is the tolerance).

additive noise n(x). We model this as a sample realization We will now find the mean and the variance of y in

from a wide-sense stationary random process with mean Eq. (5) for the two possible input cases. We will assume

A, and power spectral density P,(f). The additive noise throughout that the input noise and the detection noise

n(x) in the input leads to randomness in the output c(O). are statistically independent.

We can easily show that, when signal s(x) is present in the When the input contains only noise n(x) (hypothesis

input, HO), the mean and the variance of y are as below. Note
that H0 and H(O) have different meanings. The former is

Ejcl~lý p,11 i0 Sjf)H(f)df. (2) the null hypothesis, and the latter is the filter at zero fre-
f quency:
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ELy. ff 4 A + E{c(O),Lt4 Even before they arv cxprts-lv k irn.%, we will have re-

= ±i + p.,H(O), (6) pealed use for the anplitude. B{, .lid th pha~ e, [3, of the
central value of the filtered signal We will refer to f3 as

var NHt - •2 +H varY'c(O)!/ the output pha-v

= + f I' f),11( f) `df. (7) B exp(.[ = t3 S, f1,. 0 ji -. 2r. (7 -_ 13. (13)

When the input contains signal s(x) corrupted by additive In these terms, if we let _ýfhe a uniform sampling interval
noise ni x i thvputhesi. ill), the mean and the variance of in the frequency plane, the SNR becomes
v are

Af S, Hý 3
E{.vH,} = Pd + uH(0) + JfS(f)Hf)df, (8) SNR = =Ik B2

ad 2 + Af X Pk Mk2  ( a72/. -f2) + (P o,. -f)lM ,4

var{y H,} = y,2 + f Pýlf)lH(f)l2df. (9) (14)

U-ing the statistics in Eqs. (6)-(9), we can express the From here on, we will assume that the detector noise and
SNR n the presence of detector noise as the input noise power spectral density are normalized to

the sampling frequency interval as indicated in Eq. (14).

SNR E{yIHi} - E{yIHo})
2  In determining the filters, we will explicitly use

1/2(var{yjH,} + var{yIHo}) 0 !5 D_,, < Mk -s D,_. s- 1, (15)

if S(f)H(f)d/] expressing the finite limits of the amplitude (not the in-

(10) tensity) transmission of a passive filter. One sees that

ad2 + f p.(f)IH(f)j2df the value of D,,. in Eq. (15) can be included with the
previously mentioned scale factors in the definition of
detector-noise variance. Thus we will use the following

The only difference between the SNR's in Eqs. (4) and equation for the filter-magnitude limitation:
(10) is the extra Ud' in the denominator of Eq. (10). How-
ever, this makes the optimal filter choices for the two p <- Mk < 1, (16)
SNR's different. When ad

2 is small [compared with
f P.WH f). 2df], the two SNR's are identical, and previous where
optimal filters will still be optimal. In another limiting
case, when d 

2 is large [such that we consider only the ad' D_
term in the denominator of Eq. (10)), the SNR is propor-.P D-.- (17)

tional to iE{c(0)}1 2 , and we must simply maximize the cor-
relation value at the center. In Section 3 we provide In this equation p is Dn./DI..., the reciprocal of the
expressions for H(f) that maximize the SNIH in Eq. (10) amplitude-contrast ratio for the filter SLM.
for intermediate cases. Our approach to finding the optimum SNR begins with

specifications that produce stationary values for the SNR.
3. ANALYTICAL EXPRESSIONS If we have a filter that produces a maximum SNR and if

we make small changes in the unsaturated portions of the
We established earlier the equivalence of the discrete and filter, no first-order change in the SNR occurs. The
the continuous formulations for the optimal filters [see method is explained more fully in our earlier work, where
Eqs. (16) and (28) of Ref. 9], and for convenience we now variational calculus"" and partial differential equations'
switch to the discrete representation. H(f) becomes are used. The statement of stationarity leads to a search
H,, P.(f) becomes P.*, the region of integration becomes on only a limited set of SNR's, among which exists the
the obvious summation range, etc. globally optimum one.

We consider filters realized on two different types of
SLM: fully complex and real. In this section we will A. Full Complex Filter
determine the set of HW's that maximizes the SNR in Let us allow HA to take on any complex value on or within
Eq. (0). We will use the amplitude Ak and the phase 4, of the unit circle. The phase and the amplitude of the filter
the reference-signal transform S,: may be independently determined. Clearly the numera-

tor in Eq. (14) is maximized by matching the phases of
S, = Ak exp(jd'6), 0 -• 6ki < 2_r, 0 !5 A.k (11) reference-signal transform and filter (i.e., their sum is a

constant), and the denominator is not affected by the
We will use the magnitude Mk and the phase 0, of the fil- choice of filter phase. So our first action to maximize the
ter H,: complex filters SNR in Eq (14) is to choose its phase by

H, = M. e- p(jOki, 0 s O, - 2r., 0 _ M&• 1. 112) (0, + 6, = const 118)
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Jihe cinplh.x I itcrs amplitude remains to be found 'I he and t hu the SN R ieache, it, maximum by choice t. Al,
selecti,,n i t the filers pha.-e by Eq. (18 leaves the now- at L. = ] I f. rcer.tICJ.
real-valu,,d equat ion to optimize for the complex filters

A, At,

SNR. ( ,,. •.,6

SNR Y _. 119) then. similarly.

+ (i,~p~ SN R

VWe inut choose the set JM, to maximize the SNR subject and the SNR is maximized by .11 ,
to p! Mk S 1. If we are examining the optimality of the Defining a symbol for the saturated value allows
SNR by the choice of M at the rnth frequency, then it must a shorter for the f tr value a t

be the case either that M,, is an extremum of its allowed 0 s f b

values or that the SNR is stationary with respect to the

local choice of M_. The condition of stationarity is fix)). = sgn(x) x max[a, min(b, x)]. 28)

aSNR 0. (20) We may now write
04 . (2 0 ) I A f 9

lf this condition produces a value p :s Ml., : 1, we accept M,, _f9
it. Otherwise one extreme value or the other is neces-
sary. When we take the partial derivative in Eq. (19), where G is yet to be determined. For any candidate value

of G, Eq. (14) expresses the realized SNR. We will shortly
dSN R present the scheme to search on G for the globally opti-
aM, mized filter. For now the important point is that, where
(., + ~ )2( M , )the optimal filter is not saturated, its magnitude is pro-

a(" + kf12( I" Mk* A, ALMhA, 2M.P., portional to A/P. (the phase has already been given).
2 That the unsaturated portion of the optimal filter holds

,d2 + YP.PkM2 its shape is certainly a significant point, and it is not

obvious.
(21) We now know everything except the globally optimizing

and the derivative will be zero if value of G. We can obviously limit the search between the
values that would just saturate the largest and the

2 Y smallest values of A/P,. We now develop our search
-' strategy. We show one method guaranteed to find the

M,,, = A-• (22) globally best gain, and we show another method that may

M*A,, reduce the size of the search.
In finding the globally best gain, we have two routes

The term in parentheses is a constant with respect to the that we may pursue. The first uses the knowledge that
frequency index, since that index is summed over. Thus the optimizing gain will just saturate the filter at a particu-
we may express it as a constant, G. Then, lar value of AIP,. We will call the filter gain selected

according to that criterion G.. The second route requires

M,. =, - G, (23) that, once a gain is known, Eq. (23) also be met if the SNR
is an extremum. We will call the gain that is calculated

and we have defined the optimizing gain, G. In other from that equation once a filtcr is selected Gb.

words, for those frequencies at which the filter is not satu- We use a previous result' that showed that, when a filter

rated, the magnitude of the filter is proportional to A/P.. is optimized by choice of the region of support, all the fre-

The gain will cause saturation of the filter at some fre- quencies having equal values of A/P. are included as a

quencies. It is crucial to note, however, that the defini- block. Thus we first sort the N frequencies so that

tion of G explicitly includes the participation of the A, A, A,,, A,_ A, Ax
saturated frequencies; it is an equation, not an expression - L. ... -a > 2 ... > > -_ > ... -.--

of proportionality. We do not have the freedom to multi- P., - P,.,, " - PP.- P", -

ply a filter by an arbitrary scalar, as may often have been (30)

done in the past, to get a calculated filter somehow to fit For the moment, r and i are arbitrary, except that each is
within the physical limitations of the modulator on which adjacent to an inequality in the sequence, as indicated.
the filter is to be expressed. If We now pick the rth frequency as the one to be just satu-

GA., rated high; we denote by G. = G.(r) the gain that just
pG 1, saturates the rth frequency:

then it may be easily verified from Eq. (21) that G. P_ (31)
aSNRHG, A, (1
-- -- > 0 in 0 -S MA, _! 1, (25) Tn
ýM, The region R, is those frequencies that saturate high lie.,
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for which k s r). Similarly R, is those frequencies for which easily reduces to
which saturation does not occur (r < k < i), and Rj is
those frequencies that saturate low (k _ 0). The ratio p is +f ÷ • Po + p ,
seen to induce the relationship between r and i. is the G, = ( _ - - (37)
smallest index value such that ZA, + p

A, A, 5,
P_ > .(32)

P_. P_32 There may be a benefit to calculating the optimum filter

Of course, if the signal amplitude is so high at all frequen- on the basis of the behavior of G, as a function of G,. see

cies that the condition in inequality (32) is not met, then the discussion in Section 5. Gt is explicitly needed in a

no frequencies are saturated low, and R3 is the null set. consistency check on the output phase 3 for the optimum

We therefore have the following algorithm for the opti- real filter, as follows.

mal saturated complex filter:
B. Real Filter

Given A,, 4k, P•,, p, and ad
2
, As in the case of the complex filter, we assume that the

(1) Form the sorted Ak/Pk; suppose that this takes detector noise is so scaled that the maximum amplitude of

on L levels, the filter is unity. From Eq. (12), we can express a real

(2) For each I in 1 :5 I !5 L, calculate the just-high- filter on -1 :5 H 5 1 by taking the phase of the filter. 0,
saturating G? as to be zero or -.. and its amplitude to bey-s M _ 1. In

calculating the optimal complex filter, in the frequency

G, = P-. (33) plane we locally matched the filter's phase to that of the
At reference object. The real filter does not have that flexi-

Set the M,4 according to bility of phase adjustment. In calculating the optimal

Ak real filter, we will see that the equivalent of the complex{Mk {G, (34) filter's phase matching is taking the projection between
the signal transform's local phase and the output phase of

Calculate the SNR, according to the filtered signal, 3, from Eq. (13). In addition to discov-r ering an optimizing gain, G, we must discover the correct

A, + Gi IX(A/',./k) + p Ak angle j3. Our development is similar to that in Ref. 9,

SNR(G_) = -I "R R! where more details are presented.

2 2/pý4) + p*" Equation (14) gives the SNR. In the present case H, is
Old + X P... + G2Y_ (A~~ real; thus we do not locally match phase, and our SNR

(35) becomes

where E Akexp(+jb&)H] [>A 1 exp(-,6)H1j

R, is a set of frequencies for which M(f) = 1, SNR =

R2 is a set of frequencies for which p < M(f) < 1, ad + > P,,,HA2

R3 is a set of frequencies for which M(fj = p. k
B 2

(3) Among the L SNR's, pick the highest. Equa- B (38)
tions (33) and (34) then give M*÷, the amplitude of the op- ad + p P,ýHA2
timal constrained complex filter. A

(4) Within an arbitrary phase constant, the optimal where we have used the definition of B and 0 in Eq. (13).
filter is then Hk÷ = Mk* exp(-jd&). Taking the partial derivative of SNR with respect to H,

(5) Obviously, in the continuous case, A/P. may take on the filter value at the mth frequency, and setting it to
"a continuum of values. Evaluate the SNR from assuming zero, we have
"a sufficiently fine discretization, AkIPk, to exhibit its
functional effect on the SNR, and determine the optimiz- 2

ing threshold value. 2H.P_"B2 = ad' + .P,,H expj(i. - (3)

If the gain G = G. is to produce the optimum SNR, + A, expj(P - d,,)]. (39)

then the requirement on gain shown in Eq. (23) must be This reduces to the form
met. We denote by Gb the gain that meets Eq. (23) for the
gain G. currently under consideration; if G, = Gb, we H G. = GAcos(6 - J3) (40)
have a candidate for the gain of the globally optimized fil- P_ lb
ter. Explicitly showing the partition of saturated and un-
saturated filter values, the value Gb that meets the in which G is defined similarly as before,
stationary SNR requirement is

ad + Pýp., + G,2 _(Ak•-!Pk + p: JP., G = - (41)
.,= R: R (36) A, exp(jdk, H,

XA, + G, (A,'/P,, - A.,
A, n,.• Just as for the complex filter, the two expressions for G
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must be consistent. A significant difference arises, how- Then the numerator in Eq (45) becomes
ever. In Eq. (40) we see both the output phase, 13, and the
gain. G. As we will see, the saturation effected by a given • A, sini* - (3) s p L isimilar)

value f G interacts with the value of 1 in a manner differ-

ent from that in Ref. 9. A -{exp~jKd, - 13)] - exp!-j(d,, - /)]I
Again, we begin by sorting frequencies according to Rý 2j

expression (30) and search on the L different gains that
saturate at the L distinct levels in the sequence. G. = + p I (sinmilar)

G.(l) is taken as the gain that will marginally saturate the RI

/th distinct value of A*/P,&: exp(-jo) IA, exp(+j-x )

Gý =x,,'. (42) 2i R,2j

A( x EA exp(-jd&) + p I (similar)

R, R 3

As in inequality (32), the chosen value of gain partitions I
the ordered frequencies into R, (saturated high), R 2 (un- - - [exp(-j13)E exp(+jE) - exp(+j13)E exp(-jf)]
saturated), and R 3 (saturated low). Inserting the gain

into Eq. (41), we obtain - E sin(c - 6). (50)

rd2 + I P., + Gb' I (Ak2 /P.,) cos 2(oh - p3) + P2  p.,

G= R1 R2 R3  , (43)

exp(-j,)[ 2A, exp(jp,) + Gb I (A,2/P.,)exp(j¢,)cos(O - 16) + p E A, exp(jd.)
eR, Rx R3 J

in which we have attained the absolute value in the de- In like manner, the denominator of Eq. (44) becomes
nominator of Eq. (41) by multiplying by exp(-j13). With
some effort we can solve for Gb as a function of 3. First A, cos('k - 13) + p Z AA cos(4ik - 13)
we carry the exp(-jp) into the other terms in the denomi- R, R,

nator. Then, cross multiplying and equating the real = E cos(c - 13), (51)
parts results in

and the denominator of Eq. (45) becomes

ad + X P., + p Pk, A2

S_ _ _ _ _RIP(44) sin(t, - 13)cos(6, - 13)
SAk cos(44 - 13) + p IAh cos(O4& - P3) A 2 1

fit R - - sin(24kh -213)
Equating the imaginary parts produces another equation R2 P. 2

for Gb: [ -1 exp(-2j A2) 7_A2exp(+2j &*)

I A& sin(4,j - fl) + p I AA Sin(4i& - 4) 2 e2j +,2j.

Ga = 1 R3 _ (45) - I exp(+2j13) Y A exp(-2j4?h)
X (Ab2/Pk)sin(,Oh - O)cos(Ok - 19) 2j Jl P..
R2

We in turn equate these expressions for Gb. By applying -1 Q sin(2q - 216) (52)
well-known trigonometric identities 2 - 2

exp(+jx) - exp(-jx) Equating the two expressions for G6 , we have

sin x cos 2j F 2  
E sin(c -13)

(53)

sin 2x E cos(e - .3) 1
Q2 sin(2q - 21)

sin x cos x 2 , (46) 22

etc., we will isolate j9 in two expressions, one for sin(21) Using the trigonometric identities from Eq. (46) and doing
and the other for cns(213). Their ratio gives tan(213). some minor algebra, we then have
First we will require some defititions. We define F2 , E, e, 2 Q s2
Q , and q as functions of the gain G. and the output phase
P being investigated. Recall that G. and P induce the cos(213)[E' sin(2c) + F2 Q2 sin(2q)), (54)
partition of frequencies into R1, R2, and R3. Let and we have this expression for 13:

F2 
=a• + IP•k + P' Pk,, (47) E2 sin 2f + F2 Q2 sin 2q

it, R tan 213 = E2 cos 2e + F2Q2 cos 2q (55)

E exp(e) - XA1 exp~j4) + p A exp(J4),), (48) Unfortunately, although to superficial appearance 13 has

been separated as we accomplished in Ref. 9, we cannot

Q' exp(j2q) = _ [AY exp(J4,)]- (49) use this equation to calculate 19. The difficulty is that 13
R, Pk appears in Eq. (40). Its influence follows into the defini-
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tions for F, E, etc., in Eqs. (47)-(49) and thence into its Complex; large detector noise, any contrast. Equa-
own expression in Eq (55). The utility of Eq. (55) is as a tion (19) becomes
consistency check; the optimum SNR saturated filter
will produce the same value for f3 as was originally used AAM
in Eq (40). (Equation (55) also serves in the limiting SNR = (62)
analyses in Section 4.1 The equivalent consistency check ad 2

for the gain is that G, = G,. We are ineluctably led to a
two-dimensional search on G and 3 for the optimum SNR which is maximized by choosing M. = 1 for all k. B)
real filter. Except for searching on two parameters Eq. (18) we have
rather than one, the order-N algorithm for the optimum
real saturated filter is virtually identical to that for the H, = exp[-j(4& + ccst.)], (63)
matched filter, with the substitution of the cosine term
for phase matching. Having candidate values for G and the POE

13, we calculate filters from Eq. (40) and then the SNR Complex; any detector noise, unity contrast. Equa-

from Eq (38) tion (29) shows that all filter magnitudes are unity, and

We may be able to simplify the search for the optimum Eq. (18) produces the POE

value of G by observing Gb from Eq. (44) or (45). When Real; no detector noise, infinite contrast. Equa-

Gb = G. we have an extremum SN R. See the discussion tion (40) is met by using any choice of G such that

in Section 5 G m in (64)

Ak

4. LIMITING FORMS

Complex; small detector noise, infinite contrast. Con- This is the case we developed earlier.9

sider the effect on Eq. (19) if ard = 0 and p = 0. The Real; infinite detector noise, any contrast. Consider

equation becomes Eqs. (40) and (41). As ad' becomes large, it dominates in
Eq. (41) and causes M,., the magnitude of H,, to satu-

2 rate high. The sign of H. is the same as the sign of

Ak M,) cos(4.1 , - fl). We have a bipolar filter regardless of the
SNR = - (56) value of p. The polarization occurs with respect to the

Xp, AM. 2  output phase 13, which we can obtain from Eqs. (40), (41),
and (47)-(55) by the following observations. As ad' be-

Setting to zero the partial derivative of the SNR with re- comes large, F2 becomes large. The first thought is that
Spe6tting would tend toq - n]r/2 (n = 0,1,2 .... ) from Eq. (55):
spect to M_,

tI, 2 = E2 sin 2e + F2 Q 2 sin 2q tan 2q. (65)
M, = 1t- 2 GH' (57) E' cos 2e + F 2Q2 cos 2q (F2.)

tP.m 0 j

choose any G, such that However, as ad2 grows, regions R 2 and R 3 shrink to thewe may cnull set and Q 2 becomes zero short of an infinite value for

ad 2 . Thus F2 Q2 aSo becomes zero short of an infinite
G5min[P]k (58) value for a- 2. Since R 2 and R 3 become null, R 1 becomes

- ,J the universe of frequencies, (I, and Eq. (48) becomes
to hold the shape of the filter. In that case, we have
(within an arbitrary phase constant) E exp(je) o- A•A exp(j,0A). (66)

A,,
H,, = G A exp(-j5,,), (59) Then we see that the correct limiting value for 13 is e, the

phase of the signal averaged without regard to input
the classical matched filter. noise:

Complex; small detector noise, finite contrast. If
p * 0 but ad 2 

= 0, Eq. (19) becomes tan 213 - tan 2e (67)

= . (60) or

2 • r4 EA. ex p(jk4,) n -- n = 0, 1,2 .....
where G is from Eq. (37) with ad2  0. As before, we are o 2-1 e 2
assured of the optimum SNR if we try all G's having (68)
values

The extremum solutions for which n is odd produce min-

G.(r) = P_, (61) ima; compare with the discussion in Ref. 9 in the vicinity
A. of its Eq (21). Within an inconsequential factor of ±1.

then, we choose n = 0. and our limiting-case real filter is
and finding Gb = G, may be a shortcut. This is a new
result H, = sgn[cos(&. - G3)J. (69)
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5. DISCUSSION wholly recalculated for each candidate valu-, ,i (G -3 -
que~nCV, ventleltit,, nmovctroml one( reg•ion to 111k,tht-F and•( 1-

Practical and programmable SLM's have finite contrast qurncan me from one rei tw inotit-d ansums/.' can he appro•priately adjusted . Next we Thowed h,•
ratios. The effect ofa finite contrast ratio is that regions G, is calculable straightaway without the nm-tes ,
of t.' frequency plane where little signal energy exists but going thrcugh the computation of the SNtZ. The pzl,,b,£'
where noise power is appreciable can nevertheless not be gogtirum the of t. ih c t =;optimum choice of G, is characterized by (;. U(.•. ,
turned entirely off. Most objects that are likely signals that equality holds for the G. under conside!::tim. A,
to be detected by correlation do not distribute their en- have a candidate for the optimum filter. We thu> ins'
ergy widely in the frequency plane. This situation lend& eliminate the filter and the SNR calculations during tr-
force to our accommodating the modulator's finite con- search by observing Gb as a function of G_ (ertjinl% G
trast ratio when optimizing the SNR of the filter. is a monotonic function of r (the index of the first h ,•h

The effect of considering detector noise is to push the
saturated frequency'). If, as we suspect, G. has the opp.-

magnitude of a filter upward into saturation. The shape site frequncy, If, a we sech G, r the

of the magnitude of the filter is then not matched to that site monotonicity, then a binary search on r for G,. G
suffices, and we have at most an order-logSN search WNeof the signal. One wishes to send more processed light further suspect that, in most practical instances, good be-

th rough the filter to dom inate the detection noise. W e fu rther ofuspe a ndthat will f urth era red ual th et nu mes r g fo d b -

have presented analytic algorithms that balance the SNR havior of ent and (b will further reduce the number ,u f dif-

loss owing to deteriorated shape matching against in- ferent saturating thresholds that we must evaluate.

creased total-light throughput of a filter in such a fashion
as to maximize our stated SNR. We showed that the -n- ACKNOWLEDGMENTS
restricted attempt to increase light throughput (viz., the
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A performance measure called the peak-to-correlation energy is used to characterize the sharpness of correlation
,utputs. This measure is then used to determine the phase-only filter with maximally sharp correlation peaks.

Phase-only filters (POF's), originally introduced by Ic(0)[2
Horner and Gianino,' have been the focus of much PCE A ' (2)
recent research. We were able to prove 2 that the f Ic(r)12dT
POF's introduced by Horner and Gianino are indeed
optimal in the sense that they yield the maximum
signal-to-noise ratio (SNR) of all unit-modulus filters, where the limits of integration are from--- to +-o. It
A , we can increase the ou',j ut SNR (by -3.5 dB in is easy to see that PCE attains its smallest value of zero
the cases that we tested 2) by allowing the filter magni- when c(r) = c(O), a constant for all T. Conversely, the
tude to be zero at some frequencies. However, the PCE approaches infinity as c(-,) approaches a delta
SNR measures the tolerance of the filter to noise in the function. Thus, as desired, larger PCE values appear
input image and does not measure the sharpness of the to imply sharper correlation p,ýaks. However, the ma-
resulting correlation output peaks. jot reason for using the PCE over other available peak

Several measures have been proposed to character- sharpness measures is its analytical convenience. Us-
ize the correlation-peak sharpness. Although these ing Parseval's theorem, we can rewrite the PCE mea-
measures are good at distinguishing sharp peaks from sure as
broad peaks, their formulations preclude us from the- 2

oretical analyses. The notable exception is the re- IJ S(H(f)df
search of Dickey and Romero,3 who use the special
properties of nrolate spheroidal functions to show that PCE a (3)
the POF's introduced by Horner and Gianino are also f IS(f)nH(f)12df
optimal from considerations of peak sharpness. f

In this Letter we introduce a peak sharpness mea-
sure that we call peak-to-correlation energy (PCE). where a is a constant. It is easy to verify that the PCE
The PCE turns out to be a special case of the more is maximized if H(I) KIS(Th an inverse filter. Thus
general peak sharpness measure introduced in Ref. 3. it yields the expected result that the-inverse filter
However, the PCE is much easier to use than the produces the sharpest correlation peaks..
measure described in Ref. 3. First we show, using a Next let us consider all unit-modulus-filters, i.e., all
simple proof, that the conventional POF maximizes filters with IHMf) = 1 for all f. Let $s(f) and 4

1(f)

the PCE among all unit-modulus filters. Dickey and denote the phases of S(f) and H(f), respectively.
Romero- proved a similar result, using analysis involv- Then the PCE measured is eiven by
ing prolate spheroidal functions. We then show that IS 12
selecting a proper region of support for POF's can f IS(Sexpli[@s(I) + 4P(f]Idf
incre..3e the PCE significantly. PCE =_ _ _(4)

Let s(x) denote the input image (we use one-dimen- IPOE =(

sional notation for convenience) and S(f) denote its! IS(f) 2df
Fourier transform. Let H(f) denote the frequency
response of the correlation filter being used. The re- The lenominator in Eq. (4) is a constant for a given
sulting output, c(r), is the inverse Fourier transform of s(x), and the numerator is maximized by using
the product H(f)S(f) and is given by 'tHW = -ts(f) + 0, (5)

c(T) = H(f)S(J)exp(j2irfr)df. (1) where 0 is any constant. Thus the conventional POF
yields the maximum PCE among all unit-modulus fil-
ters. This result was proved in Ref. 3 by using a more

Ideally, c(r) should have a large value at T = 0 and general measure, which required the use of a more
small values elsewhere. A convenient characteriza- complicated analysis involving prolate spheroidal
tion of this attribute is the PCE measure, defined as functions. The resulting PCEpoy is given by
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r [,is usee to obtain the necessary signal Fourier-trans-
IS(DId form magnitudes. These are then used to determine

PCE,,. = a (6) the optimal support regions. For comparison pur-
IStp12 df poses, we determined the region of support for the

optimal SNR POF that maximizes2 the output SNR.
The resulting regions of support are shown in Fig. 2.

It is also reassuring to note that, like classical In both parts of the figure the center represents the
matched filters, conventional POF's yield correlation origin (zero frequency), the dark regions are where the
peaks at origin in the absence of noise. The PCE POF is blocked, and the white regions represent places
value for the classical matched filter4 (CMF) is given where the POF is transparent. Note from Fig. 2 that
by the SNR is optimized by permitting low frequencies

S 2 for this image, whereas PCE is maximized by blocking
IS(I')[d[f low frequencies for this image. The intersection be-

PCECMF [ = a (7) tween the two regions of support appears to be empty.

IS(f)l 4df Thus optimizing SNR and PCE appear to be conflict-
j ing goals.

The input image energy is such that a noise variance
It is interesting to see whether the POF always yields of I at the input is equivalent to having an input SNR
sharper correlation peaks than the matched filter. of 32.27 dB. The resulting output -SNR and PCE
Toward that end, we form the ratio values for the CMF '4 the conventional POF,i the opti-

A PCEPOF
PCECMF

JIsYnIdf] 2  JIS(f)J4df (8).- --..

J L [J 2df]

It would have been satisfying to show that i > 1 for Fig. 1. 32 x 32 image used for simulations.
any JS(f)I. However, the first ratio in Eq. (8) is always
greater than or equal to 1, whereas the second ratio is
always less than or equal to 1. Thus the product may
or may not be greater than 1. In the two images that
we tested (an image of a missile launcher and an image
of an aircraft), 17 was greater than 1.

As in the case of optimizing2 SNR's, we can obtain
higher PCE values by allowing for some of the filter
frequencies to have zero magnitude. Let R denote the
set of frequencies for which the filter has unit magni-
tude. Thus, for frequencies in R, the phase is given by
Eq. (5), and the resulting PCE is given as follows:

PCE(R) f [ (9) (a)

JR IS(f)12df

We can show that the support region R resulting in
the highest PCE can be obtained by including all those
frequencies for which IS(f)I is below a threshold T.
We provide a proof for this statement in another pa-
per.5  This threshold T is unknown beforehand. I I
Thus we try many possible T values and find the
corresponding support regions and PCE values. Of
these, the T value yielding the highest PCE is selected.
This yields the optimal PCE POF.

We investigated the advantage of using the optimal h
PCE POF by using the 32 X 32 image shown in Fig. 1. h
To ensure that our computer simulations used linear (b)
correlations rather than circular correlations, we pad-
ded the 32 X 32 image with additional zeros to obtain a Fig. 2. Regions of support yielding maximal SNR (a) and
64 x 64 array. A fast Fourier transform of size 64 X 64 PCE (b).
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Table t. SNR and PCE Values for Various Filters, proved the PCE value by almost 7 dB. Another inter-

Filter Type SNR (dB) PCE (d) esuing observation is that the classical matched filter
outperforms the optimal POF in both SNR and PCE

CMF 68.39 16.00 measures. That is perhaps due to permitting both
POF 59.01 26.74 magnitude and phase in the filter plane. Comparing
Optimal POF 66.60 13.71 optimal POF and optimal PCE entries, we note that
Optimal PCE 49.67 33.55 the optimal PCE results in -20 dB more PCE but 17

Input SNR, 32.37 dB. dB less SNR. Thus it appears that we have to trade
off noise tolerance for peak sharpness.

mal SNR POF,2 and the optimal PCE POF 5 are shown We acknowledge the partial support of this research
in Table 1. Note that the CMF permits magnitude by Hanscom Air Force Base under contract F 19628-
and phase variations, whereas the other three filters 89-k-0032.
have magnitudes that are either zero or unity. For
this image, the conventional POF yields SNR's that References
are 10 dB lower than those obtained with the classical
matched filters. The optimal SNR POF is -2 dB 1. J. L. Hornerand P. D. Gianino, Appl. Opt. 23, 812 (1984).
lower in SNR than the CMF. The optimal PCE POF 2. B. V. K. Vijaya Kumar and Z. Bahri, Appl. Opt. 28, 250

is almost 19 dB lower than the CMF. However, in (1989).
comparing PCE values we note that the optimal PCE 3. F. M. Dickey and L. A. Romero, Opt. Lett. 14, 4 (1989).
is the best (33.55 dB), the conventional POF the next 4. A VanderLugt, IEEE Trans. Inf. Theory IT-10, 139

(1964).
best (26.74 dB), the classicial matched filter the next 5. B. V. K. Vijaya Kumar, C. Hendrix; and W. Shi, "An
(16.00 dB), and the optimal POF the worst (13.71 dB). algorithm for designing phase-only filters with maximally
We assumed a to be 1 in obtaining the above numbers. sharp correlation peaks," Proc. Soc. Photo-Opt. Instrum.
By selecting the region of support optimally, we im- Eng. 1296 (to be published).



APPENDIX F

Partial information correlation filters with maximally sharp
correlation peaks

13. V. K. VIIAYA KUMAR, WFI Sitl AND CHARIJS HEINI)RJX

Algorithms are derived for designing three partial information filters (phase-on lv
filters, binary phase-only filters and complex ternary matched filters) that result in
maximally sharp correlation peaks. The peak sharpness measure used is the peak-to-
correlation energy (PCE), which is the ratio of the square of the correlation peak to
the total energy in the correlation output. Several simulation examples are provided
to enable a comparison of the correlations obtained by maximizing the PCE and by
maximizing the signal-to-noise ratio (SNR).

1. Introduction output SNR [10, 12, 13]. This led to filters that are

While classical matched filters (CMFs) [1] provide the maximally robust to input noise.
highest output signal-to-noise ratio (SNR), they have However, another desirable attribute of the correla-
not become practical mainly because of the following tion filters is that they result in sharp correlatio" peaks.
problems. In this paper, we use a recently introduced [14] peak

sharpness measure called peak-to-correlation energy
(a) CMFs are extremely sensitive to small changes in (PCE) to design POFs, BPOFs, and CTMFs resulting

the reference images [21; in maximally sharp correlation peaks. We also include
(b) CMFs require spatial light modulators (SLMs) cap- some numerical results to illustrate the advantages of

able of representing complex-valued frequency res- using such optimized partial information filters.
ponses [3]; The rest of this paper is organized as follows. The

.) CMFs attenuate the light because the filter magni- next section sets up the notation and provides the
tude is less than unity at many frequencies and this necessary background. In section 3, we derive and
results in low light throughput efficiency [4]. describe algorithms for designing partial information

Several remedies have been proposed to alleviate filters that maximize PCE. These filters are tested and
these problems. Composite filters [5-7] are suggested results are presented in section 4. Out conclusions are
for improving tolerance to distortions and phase-only provided in section 5.
filters (POFs) [81 are proposed to increase light
throughput efficiency. Also binary phase-only filters
(BPOFs) [91 and complex ternary matched filters
(CTMFs) [101 have been proposed as filters suitable for Let s(x) denote the signal/image which is being
implementation on real-time SLMs such as the searched for and let S(u) denote its appropriate (1-D
magneto-optic SLM (MOSLM) [11]. for signals and 2-D for images) Fourier transform (FT).

POF, BPOF, and CTMF share the common feature We will use I-D notation throughout for convenience.
that all of them attempt to approximate the complex- but all our results apply to higher dimensions also.
valued CMF. In that sense, they are partial information
filters. flow well these partial information filters do the 2.1. Classical matched filter
job depends on the figure of merit we employ. In the The classical matched filter ((M F) for detecting thc
past, we have focused on the maximization of the signal s(x) is given by

Received 24 May 199)H 1tCMF (u) S S*(u)
Authors' address" Electncal and Computer Engineering Department.
Carnegie Mellon Univermity. Pittshurgh, PA 15213-3"9). U.S. A. S(04)I e 0'" (1)
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Ohcre the superscript asterisk denotes the conjugation a three-level (-1,0 and +1) device [161. For this
nd JS(u)j and p(u) are the magnitude and the phase, reason, binary POIs (BPOFs) of the following form
espectively, of S(u). It is well known that the CMF received much attention.
,ields the highest possible output signal-to-noise ratio
SNR), where SNR is defined as below. HipoF(U) = sgn [S,(u) cos/3 + S1(u) sin/3], (5)

IE0c(1O)}I( where S,(u) and Sl(u) are the real part anti the imagin-
var (2())}" ary part, respectively, of S(u), (•/3!i• (a/2) and

,,here c(0) denotes the correlation output at the origin sgn [x = {+1, if x_>, (6)
in the absence of noise, autocorrelation peaks at the 1-1, if x<0.
)rigin) and E{-} and var{-} denote the expected value
md the variance, respectively. Many of the BPOFs proposed are special cases of the

The CMF in equation (1) is complex-valued and thus general BPOF in equation (5). Using P = 0 yields the
equires two spatial light modulators (one for magni- binarization of the real part 191, 13 = 7T/2 yields the
ude and one for phase) or use of computer-generated binarization of the imaginary part [17) and 3 = 7T/4
iolograms (not attractive for real-time applications), yields the binarization of the sum of the real part and
Thus, much effort has been devoted to designing spatial the imaginary part [181 (this sum is the same as the
ilters suitable for implementation on currently avail- Hartley transform [19] of the original signal). As in the
ible spatial light modulators (SLMs). Such filters case of POFs, we can increase the achievable output
rnclude phase-only filters (POFs), binary phase-only SNR by using the optimal BPOF (OBPOF) defined
Filters (BPOFs) and complex ternary matched filters below.
'CTM Fs).

H(\ HBmo(u), if UER,
HoBPOr(U) = 1 0 , if uER. (7)

2.2. Phase-only filters

The POFs originally introduced by Horner and Gianino Vijaya Kumar and Bahri [13] proposed an efficient
[8] are given by algorithm for finding R so that the output SNR is

maximized. In the examples tested, using an optimal R
HPiF(u) = e'• t . (3) improved output SNR by about 8 dB, whereas using an

Because of their unit magnitude, POFs provide 100% optimal f# in equation (5) improved the output SNR by

light throughput efficiency [4]. However, this also less than 2 dB. The OBPOF in equation (7) requires a

means that all the input noise comes through unatten- device capable of 3 levels (-1,0 and +1) and thus

uated because of the all-pass nature of the POF [151. should be called a ternary filter.

Vijaya Kumar and Bahri (121 showed that the output
SNR can be improved if we allow certain filter frequen-
cies to have zero magnitude. Such phase-only filters 2.4. Complex ternary matchedfilter
(which maximize SNR) were called optimal phase-only The BPOFs in equations (5) and (7) attempt to repre-
filters (OPOFs) and can be expressed as below, sent a complex frequency response with a binary or

e -~ if UE R ternary real function. This results in certain unwanted
Ho (u) =0 ifu(4) artifacts such as peak bifurcation. One solution pro-

10, if u fB, posed to avoid these is the quad phase-only filter
(QPOF) [201, which accomodates four phase values

where R (called the region of support) indicates which (+;t/4, -n/4, + 3 it/4 and -3n/4) and unit magnitude.
frequencies have unit magnitude in the filter. Vijaya It has been shown [21] that these QPOFs can be
Kumar and Bahri [121 provide an algorithm for deter- implemented with use of only one MOSLM. A power-
mining this region of support. ful generalization of the QPOF is the complex ternary

matched filter (CTMF) [101 defined below.

2.3. Binary phase-only filters tth-rMFu) = H1 (u) - j tt 2 (u), (8)

Phase-only filters cannot be implemented on available
SLMs such as the magneto-optic SLM (MOSLM) [11] where 11(u), i = 1.2 is a ternary (-1, 0 and +1) filter.
which can he used as either a two-level (- I and + 1) or Thus each lIu) can be considered as a BPOF with its
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own region of support /?,. A simple algorithm was ,iv further fo two CseýiV,0oi. First. it is extrcmel%
presented 1I0] to idcntify these regions of support. In sensitive to noise. Second, its fiequency respone
the ex;amples tested. ("IMF was seen to yield SNR s requires hoth ,m agnitude and phase variations and tthu,

greater than those obtaitcd using t11101's, OPOI's. and doCs nlot constitutc a partial intorinlat lol liter. In the
even l( )Fs. In fact, the (NI'MF SNR was within 2 dB of next section, we discuss, h)•io various partial intof-
the highcst possible SNR (that of the CMF). martion fillces Can bc dcesigned to nia\iniI/e P(I-.

2.5 Peak,-to-correlation energy

Much Of our past enphasis in designing partial infor- 3. Peak-to-correlation energy (P(CF) maximization

mation correlation tilters was in obtaining highest poss- In this section, we discuss how IPOFs, BP()Fs and

ible output SNR, that is in achieving maximum toler- (`TMFs can be designed to maximize the PCE in
ance to additive noise in the input. This is certainly equation (10). In all three cases, we allow for tilter
needed. But another desirable attribute of the correla- frequencies to have zero magnitude. that is there are

tion filters is that they produce sharp peaks in the regions of support R associated with these filters. Wc

output correlation plane. Such sharp peaks reduce the present efficient algorithms to identify these regions of

false alarm probability by dedeasing the probability support that use a proposition provdd in appendix I.
that the correlation output has larger values elsewhere Throughout this section, we assume that the input is
than at a location corresponding to the true target noise-free since our focus is on obtaining sharp correla-

location. tion peaks by use of partial information filters.

Several measures have been suggested to quantify
the sharpness of the correlation peak. Most of these
measures are not conducive to optimization and thus do 3.1. Phase-onh' firers
not help us in designing regions of support to maximize
the peak sharpness. To help us in determining the Let us consider phase-only filters of the following form.
optimal regions of support, we introduced [14] the
following peak-to-correlation energy (PCE) measure. H(u) = 0 if u14R, (11)

PCE _'1c(0) 
1 0,if u 41R.Ic(0)12

PCEJIC(r)2dr (9) Here we have deliberately chosen -0(u) instead of
-q5(u) as phase of 11(u). The resulting PCE is given as

where c(r) denotes the correlation output. Obviously, below.
PCE is the ratio of the square of the correlation peak
(assuming that it occurs at the origin) to the total PCE-IfIS(u)l exp j[o(u) - 0(u)] duJ2

energy in the correlation plane. For broad outputs such fR IS(u) 2 du , (12)
as c(r)= constant for all r, PCE approaches zero. On
the other hand, PCE approaches infinity when c(r) is a For a given R, PCE in equation (12) is maximized if and
sharp function such as the delta function. This measure only if
was inspired by our earlier success in designing mini-
mum average correlation energy (MACE) filters [22]. O(u) = (u)+p. (13)
PCE is a special case of a more general peak sharpness
measure introduced by Dickey and Romero [231, but is where p is any constant. From now on, we will assume
a more convenient measure for optimization purposes. without loss of generality that p = 0. This confirms the
For example, it is fairly easy to show that earlier results [23] which indicated that the conven-

tional POF is optimal from noise tolerance as well as

PCE - f S(u)11(u) duI 2  peak sharpness considerations. When we substitute
f S(u)121H(u)j 2 du (10) equation (13) in equation (12), we obtain

It is also easy to show that PCE in equation (10) is PC'F, IJfRS(u)I dul(-F(F - --- (14)
maximized if we choose H(u) = a/S(u) for any constant fRjS(u)V cdu
a. This confirms our expectation that the inverse filter
(IF) yields the sharpest possible output or equivalently The next task is to choose R such that P('CE',, is
the highest PCE value. Of course, we will not pursue IF maximized with respect to R
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"lo detcrminer R', the region of support that imlaxi- I1ag- iti-Itud is At. ILvcn when the Imalgc 'si/c or it', I-'l
mize, I in equation (14), \vc form the discrete size is large (tor cxam.pIe 512" b, 512). ve can ICdI(c At
version Ot equation (14) a•' belowv. to -easomahle valulcs (stuch as 250() h• quIta|I/cll t lthe

spectral lilagititLudes to a few hits (hlor cXamlIc N) III
(s,. •.A ,)' section 4. wc will show inieriical results l•laii'cd ,, i

ICF,, (R) "(I) this algorithill.

where (1 i a 1.tilliStn t hat dCpciids On the sanlpling 3.2. illuv/ jha.w'c olyf.']ilht.
interval Au and where ltat Aius consider general l3P()[s of the ltoi Ni,'len

S, -IS(iA iu). (16) below.

We will assume fromn now on that u = 1. We will also 11() I or 1, if 1c1R. (o(I)
assume that I t-- i -- N. Our objective is to choose the 0, if 14 q R.
integer subset R from the integer set 11,2 ..... NJ so
that P't•, (R) in equation (15) is maximized. Strictly speaking, this is a ternary valued lilter 1241. but

The proposition stated and proved in appendix 1 is we will refer to it aý a BPOF with a region of support.
useful here. Note that 7(R) in equation (A 1) is identi- Using equation (20) in equation (1It), we obtain
cal to the PCEOIF (R) in equation (15) if x,=S, and
y,=S1, i=1,2,...,N. Then z,=x,ly, equals 11S, for IfRS(u)l(u) duI2

i = 1,2 . N. According to the proposition in appen- PCE = fRlS(0)ld (21)
dix 1, the optimal subset R* must include all z, values
larger than a threshold. Since z,= 11S,, the optimal
region of support R* for the POF must be as below, where the denominator is seen to depend only on the

choice of R. Thus, for a fixed R, maximizing PCE in
R,,, ={i: S, ! T}, (17) equation (21) is equivalent to maximizing lc(0)). where

where T is a threshold to be determined. This suggests c(0) = S(u)lI(u) du. (22)
the following algorithm for determining the optimal JR
region of support.

If c(0) has magnitude Ic(0)l and phase 13, that is

POF algorithm c(0) = Jc(0) e"'t, (23)

1. Perform the Fourier transform on the reference
signal/image and sample it to obtain N samples. Let we can write Ic(O)l as below.
S, denote the magnitudes. Let there be M distinct
magnitudes T, < T2 <... < T, in the set

,Is, s 2 .... SNI. Ic(O)i = e-i 1(u) du
2. Construct the region of support R*)F(T,) as below

for i = 1,2 .... M.

R*POF(T,) = {k:S • "T,}. (18) JRS# (u)H(u)du, (24)

The corresponding PCEPOF is given by where

(X1kcR;oýT,) SkY SO (u)= S(u) e' (25)
PCEpF(T,) = -,•R FlT,)S. (19)

Before we discuss how c(t(l) in equation (24) can be

3. Choose the highest value from PCEPOF,(TI), maximized by choosing proper 11(u), it is important to
3. . . , PChoo F Use the higestva resfronding PC (TI), (reiterate that #is the phase of the correlation output (atsPCE (T). Use the corresponding Rrgo (s7-, the origin) when 11(u) is used as the filter. The follow-
as the region of support ing discussion about maximizing I1(0)1 is the same as

This algorithm is fairly simple to implement. It basi- the one found in reference 1101 and is -repeated her," for
cally requires M steps when the number of distinct 1- convenience. Since 11(u) and 1c(0)1 are real. equation
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(24) is equivadent to the folhowing. where 7' is a threshold to he determined. Since Z'
depends on S•., which in turn depends on J3. we must

c(.))! f S"R(u)Il/(u) du. (26) try all possible /3 values before we determine the best
R RI*I,,n . However, it can be shown It ] that we need to

vary P3 only in [0,7021. Thus, we try /5 \aluCs inI
Shere S;H.(t) is the real part of ,5(4) and is given by increments of Aft. This leads to the following 131,OF-

5,1(u) -S,(u) cosfl + S0(u) sin /l. (27) algorithm.

vith S,(u) and S,(u) being the real part and the imagin-
ary part. respectively, of S(u).Since 11(u) takes on either - 1 or + I for all u E R, an BPOF algorithm

uppcrbound can be put on the Ic(0)l in equation (26) as 1. Start with#3= 0.
shown below.

Ic(0)) 1 f ISaR(u)I du, (28) 2. Compute SARk, Sk for k = 1,2,. N using equations

R (16), (25) and (26). Compute Zk= SýRkSi.

with (tie equality satisfied if we use 3. Determine M, the number of distinct magnitudes in

fsgn 1LfR(u), for U ER, the set {z,,z 2 .  Z zN}. Denote these as T,.
IlipoF(u) 0. for uI R. (29) T",. . . , Tm. The number M and the levels T, can

change asf #is changed.

However, we have not yet proved that the filter in
equation (29) does indeed yield a correlation output 4. Determine the optimal region of support as below.
with the correct phase 3. We prove in appendix 2 that
the BPOF that yields the highest value of Jc(0)I must be RTBoF(fM, T,) = {k:zk - T,} (34)

of the form in equation (29) with P3= 3*, where #3* is
the resulting phase of the output correlation peak, that Compute the associated PCE•,or from equation
is, we can assume that the optimal BPOF is of the form (31). Do this for i 1,2. .
in equation (29). The resulting PCERpoF (R) is given by

5. Determine the maximum PCE*po,(/3, Ti) as i is

PCEHpoI.(R) = IJRS/IR(u)I dulJ (30) varied from 1 to M. This is the maximum possible
JRIS(1)l du PCE*PoF(fl).

Our next objective is to choose R such that PCEBPOF(R) 6. Increment (3 by Afl. If (3 exceeds xt/2, go to step 7;
in equation (30) is maximized. Once again, we form the otherwise, go to step 2.
discrete version of the FT magnitudes, set the irrele-
vant (at least for optimization purposes) constants to
unity and obtain the following. 7. Determine the maximum among all PCEFpoF(03)

values. Let P3* be the corresponding angle. Output
[) , RSqRk(1 the associated optimal region of support.tFCEHPOF(R) -- &E•RSA, (31)

When the above algorithm searches over (3 values in
where Sk was defined earlier in equation (16) and where the range 10, nt/2], we can identify the best BPOF.

When (3= 0 and n3= t/2, the resulting BPOFs in equa-
SO1 SR(kAu). (32) tion (29) possess the correct even or odd symmetry and

the resulting correlation output c(0) will have phase
Once again, the proposition in appendix 1 is in. (ru- fl = 0 and fl= nt/2. Thus for 3 = 0 and (3= nt/2, the filters

mental in determining R*. PCEeF(R) in equation (31) identified by the above algorithm will indeed yield the
is the same as iq(R) in equation (45) if we assign x, = SMR, proper correlation outputs. We have shown in appen-
and y, = Sf, for i = 1,2 .... N. As before, what matters dix 2 that the filter yielding the highest PCE value also
is the ratiý Z, = x,ly, = SR,,S. The optimal region of is consistent in that sense. However, there is no such
support R .must be of the following form. guarantee for other 3 values. In section 4, we will show

R*R = {i:z, • T}, (33) numerical results obtained using this algorithm-
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3 3 (omlph'x termrnary , tnahhed ]i/t'rx that proof here since it is a generalization ot the BPOF

In this section, we consider ('TMFs of the form in proof in appendix 2 and can be found clscwhere 1101.
equation (,). The resulting Is('I i given by When the optimal CTMF, is used. we obtain

IfS(4)lI(1) d1111 UfR.S6R(u)1 du + fJ,jSti,(u)I d,4'

f s( 0)121 11 ()-) + II( ) PCCE ,-i (13 ) d IS( )l du + IS(1)l' du (40)

If S(u)l1(u) d1l- ( If we take the discrete form of the inlegrals in equation

fJRS(u)1- du + f,,IS(u)12 du' (35) (40) and set some of the constants to unity, we obtain

where lt(u)=0 for uJR, and tt,(u)=O for uIR,; [,kER,S,#RA + XS,]-F

otherwise, Hj(u) and H,(u) take on -1 or +1. To PCE_-r(I3)- XARSA+y.ER:3,A (41)
maximize PCE(-,,M in equation (35), we need to maxi-
mize lc(0)I. where c(0) is as in equations (22) and (23). where Sk is defined in equation (16) and SjIHL and Sfl A
We can write lc(0)l as are samples of S#R(u) and Sql(u) for k = 1,2, .... N. At

first, equation (41.) appears to be very different from

Ic(0))I = S1, (u)tI(u) du the ?I(R) in equation (45). However R, and R2 repre-
J sent regions of support for two different functions and

thus are independent. Let us consider the following
=f[Sku)+jSfl(u)][tti(u)_jH2 (u)Idu sequences x, and y,, each of length 2N. For i=

J 1,2 ..... N define

=fR S.,(u)H,(u) du + f S#,(u)H,(u) du, X, =

(36) X,+N=Sm, (42)y,'= S1,

where once again, we utilized the fact that Ic(0)I must Y,+N=S2.
be real. Obviously, Ic(0)j attains the highest possible
value (for fixed R, and R,) if we can choose Hj(u) and Similarly, construct a composite region of support R
H2(u) as below, such that integers between 1 and N refer to the contents

sgnS(u), for u ER1,of R, and integers between (N+ 1) and 2N refer to the

sgn[S(RJ)] fr u ER•, (37) contents in R2. Then equation (41) can be rewritten as
1, for u I R,, below.

and [~•]
PCET-rmF(/3) - XkERXkjy (43)

fsgn[St1 (u)l, for UER 2 , ()ERYk
0, for u I R 2, (38) Now, we can apply the results of the proposition in

appendix 1 which indicates that the optimal R *(-r,,, must
S#R(u) is defined in equation (27) and S#I(u) is given as be of the following form.
follows.

R~I-rM,(fl) ={k:xA/yk Ti7}. (44)

SP 1(u) = SI(u) cos ,8 - SR(u) sin fl. (39)

As before, we need to vary /3 in increments of A/3
Once again, there is no guarantee that H,(u) and between 0 and jT/2. This leads to the following CTMF

H 2 (u) in equations (37) and (38) produce a consistent algorithm.
phase /3 in the correlation output. However, using the
associated symmetries, we can show [101 that for /3=0
and ,q = t/2. these filters produce correct phases in the CTMF algorithm
correlation output. We can also show [10] that the
CTMF that yields the highest Ic(0)I value is of the form 1. Start with/3--0.
in equations (37) and (38) with P *=/3 and it produces a 2. Compute Sp,,, Spk and S, for k 1,2 . N from
correlation output with phase fl. We are not repeating equations (16). (25). (26) and (39). I)etcrminc ,
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Two types of results are shown in this section. The tirsi
type, tlhat we refer to as 'numerical cvaluations', con-
sists ot PC'l- and SNIR values obtained by numerically
evaluating various algebraic expressions (such as equa-
tions ( 19). (31 ) and (41 )). The other type of results that
we refer to as 'simtulatiorn results' are obtained bv
producing correlation outputs and then estimating
SNtRs and i('1Fs from equations (2) and (9). PCE can
be obtained from single correlation output. ]towever,
SNR estimation requires that we compute expected
values and variances and thus we produce many (one
hundred in our tests) correlation outputs (using inde-
pendent input noise realizations) from which we obtain
the necessary averages and variances. To avoid getting

Figure I. The 32 X 32 image of a missile launcher, a circular correlation (wrap-around error), we pad the

32 x 32 input images with zeros to obtain 64 X 64 arrays
and perform FFFs of size 64 x 64 on them. When

and Y, for i= 1,2 . 2N from equation (42). constructing BPOFs and CTMFs, it is important to
Compute z, =xx/yK for k = 1,2 .2... 2N. centre the images properly. We ensure that the cen-

3. Determine the number M ot distinct magnitudes in troid of the image coincides with the origin of the array.

the set {z,, z2 ..... z,.}. Denote these as Finally, when we add noise to the input image, we add

T1, ,"T2 ...... M. it to all 64 x 64 pixels in the array. Otherwise. the
resulting noise power spectral density will not be a

4. Determine the optimal composite region of support constant as was assumed in the derivation of OPOF,
as below. OBPOF, etc.

R*-rM:(fl. Tj) ={k: zk: T,}.
4.1. Regions of support

Identify R* and R* associated with the above com-
p r The 64 x 64 FF1' of the image in figure 1 is a complexposite region of support and compute the associated ara._nfiue)we hwtemgiueo htary

PCE•,-5IM from equation (41). Do this for i= array. In figure 2, we sh the magnitude of that array.

1,2. M. White regions in figure 2 indicate frequencies with large
magnitudes and dark regions indicate low magnitudes.

5. Determine the maximum PCE*-rM,,:(f3) by varying i We are including this figure so that the regions of
from I to M. support we show can be properly interpreted. The

6. Increment 0l by APt. If 0 exeeds j/2, go to step 7; origin of this array is right at the centre in these figures.
"6.Inrwemento /3 b . We used the algorithms derived ealier [10, 12. 13] to
otherwise, go to .tep 2. determine regions of support for maximizing the ouput

7. Determine the maximum PCE*TM -(13). Let /3* be
the corresponding angle. Output the associated opti-
mal regions of support.

The same comments as in the BPOF algorithm apply
here. We can be sure of the consistency of the filters
only for /3 = 0, /3 = 3x/2 and/3 *. We will discuss this issue
in some more detail in our next section on numerical
results.

4. Numerical results

In this section, we apply the algorithms discussed in
section 3 on .,ome sample images to illustrate th,-
improvements possible in correlation filter design. The
image used for most of the testing is the 32 x 32 missile Fipure 2. The magnitude of the 64 X 64 FF1 of !he image in
launcher image with 256 gray levels shown in figure 1. figure !.
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(a) (b)

Figure 3. Optimal regions of sup-
port to maximize output SNR when
input noise is additive and white: (a)
OPOF, (b) OBPOF (fot 9l 0°), Wc
region R, for CTMF (for fl= 45°),
(d) region R, for CTMF (for /

(c) (d) 450).

SNR when the input noise is additive and white. We different from those in figure 3. These emphasize high
show these regions in figure 3. Here white regions frequencies. Once again, we could not have predicted
indicate where the filter has nonzero magnitude and the complicated shapes of these regions without the
dark regions indicate where the filter has zero magni- algorithms derived in this paper. Also, note that the
tude. Figure 3(a) sh'ws the region of support for OPCE-POF in figure 4(a) is zero for many low frequen-
OPOF, figure 3(b) for optimal BPOF (fot fl = 0°) and cies which means that the conventional POF (which is
f ure 3(c) shows R, for CTMF (for fl=45°) and figure all pass) will result in lower PCE values.
3(d) shows R2 for CTMF. All these regions allow low
frequencies to go through while blocking high frequen-
cies. This is as expected for SNR maximization. 4.2. Output correlations

However, we could not have predicted the irregular In this section, let us examine the correlation outputs
shapes of these optimal regions of support without produced by various filters. Figure 5 shows the correla-
using the algorithms derived earlier. These filters will tion outputs obtained using CMF, conventional POF,
not produce sharp correlation peaks because of their BPOF (real part binarization), BPOF (imaginary part
low pass nature. binarizaton), OPOF, OBPOF, CTMF, OPCE-POF,

The optimal regions of support obtained by maximiz- OPCE-BPOF and OPCE-CTMF. We are including all
ing the PCE values are shown in figure 4. The / value of these in one place to enable easy comparisons. In all
for which we get the highest PCE value when using a these figurcs, the input was noise-free. All methods
BPOF is 90' (not 00) for this example. The region of produce peaks at the right location. The filters opti-
support shov, n in figure 4(b) thus uses /ý=9(0". mized for SNR produce broad correlation peaks wher-
Similarly, the regions of support in figure 4(c, d) for eas filters designed to optimize PCE produce sharp
("I M F uc a 1ý value of O0. These regions, are very correlation peaks. Also OPC'-POF produces sharper



9"2

I •a-'q! 41 1 , -'.s

'iI I

IL ti'
"k h' " : ;- aI•

.% %. .% %((a

X % ,% .

: %

.5. .:a-aa. *.a.a

* : ~,, -'' - V: . ,,%% Figure 4. O ptim al regions of sup-"% " ." 6ý %i %Port to maximize PCE: (a)
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(for# /=0) (d) R, for OPCE-CTNIF(d) (for 13 = 0 o).

peaks than the POF as seen by comparing figure 5(b) 4.3. Comparison of numerical and simulation res'uh_and (g). Also, by using OPCE-BPOF and In this subsection, we present a summary of simulationOPCE-CTMF we can use binary or ternary devices in results we observed for various filters. In table 1, we
the filter plane and still obtain as sharp output peaks indicate the SNR and PCE va!ues obtained (usingas can be obtained using phase-only filters (see figure numerical evaluation as well as simulations) for various5(g-i). filters. The numerical results and the simulation results

The above figures describe only part of the story. We are very close to each other. In fact, for the PCE
show in figure 6 the correlation outputs when the input measure, they are the same since there is no random-image was corrupted by zera mean additive white ness involved in estimating PCE values.noise. The variance of the noise was selected to be As expected, the CMF provides the highest output100000. This corresponds to an input SNR of SNR; but OPOF and CTMF both produce output- 17.73 u13. The input SNR is defined as the ratio of the SNRs within 2 dB of this. When we realize that CTMFaverage energv per pixel in the input image t, the can be implemented with a single MOSLM in the filter

variance of the noise. It is obvious that the CMF. plane, we believe that it is now possible to implementOPOF, OBPOF and CTMF are robust to input noi,e highly noise-tolerant correlation filters on commerciallywhereas o'(,er filters are not. Thus, we have traded available real-time SLMs such as the MOSI.M. Partialaway noise tolerance when we maximized PCE. This, information filters optimized for peak sharpness yieldwe believe, is the unfortunate reality in correlation highly degraded SNRs (about 20dB lower than that of
filter design. We will discuss this issue in more detail in the CMF). On the other hand, use of OPCE-POU-the next section. OPC'E-BPOF: and OPCL•-(,TMI. improves the P( -J Ix
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Figure S. Correlation outputs produced by various filters when input has no noise: (a) CMF, (b) conventional POF, (c) BPOF (real
part binarization), (d) BPOF (imaginary part binarization), (e) OPOF, (f) OBPOF, (g) CTMF, (h) OPCE-POF. 0i) OPCE-BPoF,
(j) OPCE-CTMF.
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igure 6. Correlation outputs produced by various filters when the input SNR is -17-73 dB: (a) CMF, (bi) Conventional POF.
IBPOF (real part binarization), (d) BPOF (imaginary part binarization), (e) OPOF, (f) OBPOF, (g) CTMF, (h) OPCE-POF.
)OPCE-BPOF, (j) OPCE-CTMF.



96

Partial information correlation Jilters 41

8 '0 2062

8I

0

o000 000

(g) (h)

C 0.
0

o 0.2

0 1-U

ow]
.47

Figure 6 (continued)

For the simulations, we again zero-padded the image
to make it a 64 x 64 array. This image was then cor-
rupted by adding zero-mean gaussian noise with a
variance of 1 (the same noise variance as in table 1).
For the tank image, the image energy was such that this
corresponded to an input SNR of 28-57 dB. In table 2,
we show the processing gains provided by various filters
(designed with the missile launcher image) when the
input image is a missile launcher and when it is a tank.
Processing gain (PG) is defined as the difference in dB
between the output SNR and the input SNR. Thus PG
takes into account the differences in input image
energy. We use the difference in the PG for the missile
launcher image and the PG for the tank image as a Figure 7. The 32 x 32 image of a tank.
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Figure S. Correlation outputs produced by various filters tar the tank image without noise: (a) CMF, (b) Conventional POF,
WC BPOF (real part hlnarization), (d) BPOF (imaginary part binarization), (e) OPOF, (f) OBPOF, (g) CTMF, (h) OPCE.POF,
GI) OPCE-BPOF, (j) OPCE-CTMF.
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Figure 8 (continued)

Table 2. Discrimination performance of variouis filters, measure of discrimination gain (DG), f,6 is indicated
in table 2.

PG for PG far Discrim- This table seems to divide the 10 filters into three
missile tank inat ion grusThfitropiiefr N (C FOP ,Filter launcher image gain gru.ThfieropmiefrSN (C FOPF

type image (dB) (dB) (MB) OBPOF and CTIMF) provide very poor discrimation.
Filters designed to maxinize PCE (OPCE-POF,

CMF 35-70 32-56 3-14 OPCE-BPOF and OPCL-CTMF) provide very good
POF 27-01 16-38 10-63 discrimination. Othet filters (POF, BPOF-real.
BPOF(real) 24-67 16-93 7'44 BO-mgnr)%pa opoieitreit
BPOF(imag.) 21-52 3.02 18-50 BPFiaiay perto rvde nemdae
OPOF 34-23 32-61 1-62 levels of discrimination.
0O3POF 34.40 32-48 1.92 The correlation outputs in figure 8 tell the rest of the
CTMF 34.88 33-83 1-05 story. We coi related the noise-free tank image with the
OPCE-POF 17-47 -12-65 30-12 various Pi'ers. One can see, by comparing these figures
OPCE-BPOF 15-61 -5.30 20-91
OPCE-CTMF 16-02 -6-61 22-63 with the corresponding ones in figure~ 5, that the opti-

mal PCE filters do indeed provide better discrimation
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Proposition: If integer n i6 included in the optimal Dividing both sides of eCluation (1) h\ tile p C'.itivc
subset R*, then all integers k z n must also he included in term ,(v, - h). we get the following result
R*.

numerator
Proof: Suppose n E R *, k I R*, where k < n. We will
demonstrate a contradiction thus proving that the yk +.I)
above cannot happen. To show this, we dcline the xA (x, 4- a).
following - (x + 2 x + 2 a)- --

Yk yt + b)

xn (x, +)
a = E x, -ý x°,(46) -- (x, + 2a + 2x,)

Y. (+,2 +b)

x.(y, + b)(xk + 2a + 2x,) - y (xý + a)'

b Y-. (47) y.v.y + b)
,ER•" (bx2, + 2abx, - a2y,) + (bx, + x2y, + bxx + x,xAyv)

Here a and b refer to the summation of all xs (except y.(y. + b) -

x.) in R* and the summation of all y,s (except for y,) in (52)
R*, respectively. Since ,7(R*) must be larger than ?I(R) where we used the fact that since k<n, z, =x, /vY,
where R is obtained from R* by removing n, we have z,=xqly,. The second term in the numerator of equa-
the following inequality. tion (52) is obviously positive. The first term is also

positive from equation (49). This implies that
(x +a) a Numerator>O, which in turn implies that mj(R')>

y.+b b ( i(R*), an absurd result. This is a contradiction thus
implying that if integer n is included in R*, then all
k<•n must also be included in R*.

After some algebraic manipulation, we obtain -nmsalobicuddnR*
This proposition implies that the optimal subset R*

must be of the following form
bx2 + 2abx, --a2yy. (49)

R = {i:z,> --T7, (53)
Let us now consider the ?I obtained when we use where the threshold T is not known a priori. Thus we
R' = R* u {k}, i.e., the subset obtained by adding k to
the optimal subset. Let A denote the difference
between ?I(R') and q(R*)

Appendix 2

A=I(R') -(R*) Proposition: For a given region of support R, the
BPOF yielding the highest Ic(0)l value must be of the

(x, + a + xk)2 (x, + a)2  form given in equation (29).

y,+b+yk y.+b Proof: Let the output c(0) using a BPOF H(u) have
magnitude Icl and associated phase fP, that is

(y,, + b)(x. + a + Xk)
2 

- (x. + a)2 (y. + b + Yk)

(y, + b)(y. + b +yk) . S(u)H(u) du = Ici e-i. (54)

(50)
Choosing H(u) to maximize Icl is equivalent to maxi-

Since the denominator of equation (50) is positive, we mizing the following
can show that A >0 if we can show that the numerator
of equation (50) is positive. That numerator can be Irl = S(u) e -iH1(u) du
simplified as below JR

numerator = xM(y, + b)(xk + 2x, + 2a) - y,(x, + a)". (51) = fR S•R(u)It(u) di. (55)
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)bviously, Icl is maximized (for a given /3) if we can use Also, since we assumed that when we use Hp.(u) in
he following BPOF equation (54) we get an output with magnitude lei and

11# = S(u), for U ER, ( phase fl 1, we can write the following

tt,0(u) = , {"n for u I R. (56)

-et the binary phase-only filter that maximizes Icl result el" = e-1/1' fR S(u)ttt '(u)

n a output correlation with phase fl*. Then we will
irove that this optimal filter must be Hp(u) where
1#(u) is defined in equation (58). Corresponding maxi- The right-hand side of equation (58) is the real part of
num value of Ici is denoted by Ic(fi*)I and is given by the right hand side of equation (59) and thus Ic(fi*)I

must be the real part of lei ei'. Thus, unless A = 0, we

Ic(3*)[ = JR S#.R(u)H#.(u) du (57) have

We need to prove that when we substitute Hp.(u) in lei > Ic(# *)1. (60)

'quation (54), we do indeed get a phase of fl. Let us
issume that this filter yields an output phase Ph *f*. This is a contradiction since we started with the as-
,et A =,8 -*. From equation (57), we can write sumption that Hp.(u) is the optimal filter and Ic(P *)I is

the maximum possible value. Thus fi cannot be differ-

Ic(p*)I=Re [e-"6' S(u)Hp.(u)du]. (58) ent from fi*. So, the optimal filter must yield a consis-
IJ R tent output phase.
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Abstract

Designing filters for use with optical correlators is really an exercise in trading one performance
measure against another. In this critical review, we present several different situations where such a
tradeoff is carried out. An informed understanding of this law of nature is important in making sure
that our goals in optical pattern recognition are realistic.

1 Introduction

Correlation has been the focal point of much optical pattern recognition research over the past twenty
five years. Vanderlugtl demonstrated how a coherent optical processor can be used to implement complex
frequency response needed in a Classical Matched Filter (CMF). The CMF is attractive in the sense
that it maximizes2 the tolerance to the additive noise in the input. However it suffers from th( following
drawbacks.

" CMFs are unacceptably sensitive to distortions in the input image (e.g., rotations, changes in scale,
etc.).

"* CMFs are light-inefficient because their transmittance is less than one at many frequencies.

"* The complex-valued frequency response of the CMF makes it inconvenient for implementation on
currently available real-time Spatial Light Modulators (SLMs) such as the Magneto-Optic SLM'
(MOSLM).

Several strategies have been used to alleviate the above problems. To make the optical correlators
more light efficient, Phase-Only Filters4 (POFs) and other variants have been suggested. To make these
filters more appropriate for implementation on available devices, filters such as the Binary Phase-Only
Filters- (BPOFs) have been suggested. Many methods to reduce the distortion sensitivity of the matched
filters have been proposed. A good place to start learning more about these attempts is the survey paper
by Vijaya Kumar6 . Most of these methods focus on one aspect (e.g., distortion sensitivity) while ignoring
others (e.g., light throughput, noise tolerance, etc.) in the design of correlation filters. The unfortunate
reality is that by improving one feature of the filter performance, we are usually degrading others. The
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il1roduce tile relevant perforiiaice IlieaNilles ill S'ctioln 3. In Section 4, We discuss the Op)timiiial "radool,

Filters (OTFs) introduced by Refregier'. These show how noise tolerance, correlation peak sharpness

and light efficiency can be traded off in designing a complex-valued filter. Another method suggested is
to record tile matched filters nonlinearly. 11y using fractional power filters, we demonstrate in Section 5

that this nonlinear recording leads to another example of trading off among these performance measures.

The POFs and BPOFs as introduced originally are allpass, i.e., these filters have unit magnitude at all

frequencies. Recently, it has been shown that the noise tolerance8 ,9 and correlation peak sharpiness1 0 of

these filters can be maximized by setting some frequencies to have zero magnitude. The set of frequencies

for which the filter magnitude is nonzero is known as the Region of Support (ROS). Il Section 6, we

describe how the ROS can be selected to provide an optimal tradeoff between noise tolerance and
correlation peak sharpness. Another way the ROS can be used is to tradeoff the sensitivity to noise

in the input against detector noise. This is discussed in Section 7. In Section 8, we switch gears and

consider an important tradeoff in composite filter design. In this section, we show the tradeoff in the

number of training images used and the resulting noise tolerance. In Section 9, we discuss the optimal
circular harmonic tradeoff filters introduced by Refregier'1 and also summarize the work by Refregier
and Figue"2 in relating OTFs to classical Wiener filters. Finally, in Section 10, we provide our concluding

remarks.

2 Background

Let us first consider the problem of detecting the presence or the absence of a target image s(x, y)
corrupted by additive, zero-mean noise u(z, y). One optical processor designed for this task is the

coherent optical correlator shown in Fig. 1.

I NPUT FILTER CORRELATION

P1 L P2 L2 P3

Figure 1: A schematic of coherent optical correlator.

Here the input image r(x,y) (which is s(x,y) + n(x,y)) is placed in plane P1 and illuminated by
coherent light. Then the light wavefront reaching plane P 2 can be represented by R(u, v) which is the
2-D Fourier Transform (FT) of r(x,y). If we prerecord and place in plane P 2 a complex transmittance

H*(u, v) (with the superscript * denoting the complex conjugation), then the light wavefront c(,r,, ry) in
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whre h(2x, y) is the inverse F triir traUisfiInI of II(i,, v) and ' ('lnot(es the 2-I) crosscorirlvatioI operation.

We Illust ein)h dasize Ilhat the comlnex Conjugate of ll(u,v) will be placed in plane P2. TWhe cla.ssial

nmatchied filter ((CNI") uses

lICAIFJ(U,V) = S(U,v) (2)

where S(u,v) is the 2-I) Fourier transform of s(x,y), the reference image. When this s(x,y) is present

in the input scene r(x, y), the resultant correlation output c(T 1 , r.-) has a large value (called the "peak")

at one location and small values elsewhere. The spatial coordinates of the correlation peak indicate the

location of s(z,y) in the input scene.

As described in Section 1, one problem with CMFs is that the filter transmittance If( u, v)l is less
than one at inany frequencies and tLhiis causes much of the light incident on plane P2 to be_absorbed by
the nie(I uI inl plane P2. One solution for this is the POF introduced by lHorner and Gaii no 4 .

J Ii , V) S(U, v) (3)
IS(it,V)I

Thus IIIpoF(u,v)j is one for all frequencies and there will be no light attenuation. Sinces POFs art_
all pass, there is no way to filter out tile noise in the input plane. We will discuss this in detail in Section
6.-

Some currentlyevailable SLMs such as the MOSLM can be made to provide transmittances that are
either -1 or -1. For implementation on such devices, we must make H(u, v) to be either +1 or -1. This
can be done by binarizing either the real part-, the imaginary part' 3 (or some linear combination 14 of
the two) of S(at, v) to get H(it, v). Such filters are known as Binary Phase-Only Filters (BPOFs).

itBPoF(U, V) = Sgn[aSn(u, v) - V1 - a 2 S(u, v)] (4)

where 0 < a < 1, SR(u, v) and St(u, v) are the real part and the imaginary part, respectively, of S(u, v).
The Sgn[-] function is defined by

Sgn[z]= { +1 ifzi >0 (5)
-1if x < 0

Other attempts to design correlation filters suitable for implementation on available SLMs include the
work by Judayl's 6 and by Farn and Goodman1 7 .

Both POFs and BPOFs are sensitive to minor variations in the input image and do not address the
problem of distortion-invariance. Several filter design schemes6 have been proposed to make the correla-
tion outputs more invariant to distortions in the input image. One of these methods is known as the Syn-
thetic Discriminanlt Function (SDF) approach. The idea underlying the SDF method is to design a syn-
thetic or composite h(x, y) such that when it is correlated against images {sl(x, y), s 2 (x, y), .-. ., SN(Z, Y)}
the resulting correlation outputs have equally strong correlation peaks at the correct locations. Here
si(x, y),i = 1,2,., N represent the original image s(x, y) distorted by various amounts. The "training
set" of these N images represents the expected distortions in the image. In the first SDF method"8 , the
composite image h(x, y) is assumed to he a linear combination of the N training images, i.e.,

h(x, y) a .sm(x, y) + a2s(X, y) +- + NsN(X, y) (6)
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Substituting eq. (7) it. eq. (6). we can obtain the following set of N linear equations in A' unknowns,
I iat IIV'y (11 , (12,... a N .

A'
I:ai j =Cj, j = 1, 2, . . .,A',(•

t=1

where RiJ, the inner product of s,(x, y) and s j(xy) is given by

-?, = .if,(x,y)(x,yy)dxdy. (9)

While the basic SDF solves the problen, of distortion sensitivity, it introduces other difficulties. There is
no accounting of input noise in the basic SDF. Also, since the basic SDF controls what happens to the
output at only one point, the resulting correlation outputs usually exhibit sidelobes much laiger than
the desired value at the origin.

"To introduce noise tolerance into Sl)l' design, Vijaya Kumar" proposed Minimum Variance SDFs
(MVSDIs) that exhibit the smallest outjput variance wl'ile satisfying the SDF constraints in eq. (7). To
reduce the false sidelobe problem, Mahalanobis et. al." introduced the Min.mum Average Correlation
Energy (MACE) filter that minimizes the average correlation plane energy while satisfying the SDF
constraints in eq. (7). Recently, Refregier'l showed how these different design objectives can be combined
into a single filter design.

In this section, we provided a brief background about the classical matched filters, phase-only filters,
binary phase-only filters and synthetic discriminant functions. In the next section, we review some
periormance measures useful in assessing the effectiveness of these filters.

3 Performance Measures

As already indicated, it is important to use quantitative measures of performance in evaluating various
filter design schemes. In this section, we review some useful measures. This is essentially a condensed
version of a longer paper 22 on the same to,,

We have stated in Section 2 that CMFs provide maximum noise tolerance. More precisely, CMFs
yield the highest Signal-to-Noise Ratio (SNR) where the SNR (assuming that the correlation peak is at
the center) is defined as follows

, zN/ J E~c(0,0)}12
SNJ = 0)}, (10)

This SNR is the ratio of the average value of the correlation peak to its standard deviation. Other SNR
measures can Le found in the literature, but we feel that this is the most appropriate for characterizing
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.8A! j '(Iff 5(1, )II(uv)) t i, I "v)
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where ),(JU, v) is the power Sp•ctlal density of the additive noise i7(X', Y) iin the ii pUt. The S1Nl ex pressintl
in eq. (11) indicates the explicit deplendence on the reference image FT S( u, v), noise spectruni P' (u, v)
and of course, on the filter I1(u, v). Using Cauchy-Schwartz inequality, one can easily prove"2 that

IS(U, V)J12 dudv

= SNFIn,,, (12)

and that this equality is achieved by the CMF. All other filters (including POF, BPOF, SDF, etc.) can
only yield smaller SNRs. However, we can seek POFs and BPOFs that maximize SNRs. Such SNR-
maximal filters are known as Optimal POFss and Optimal BIOFs 2

-
3 . In some sense, the MVSI)F"

yields the optimal SNIZ among all Sl)l2s.

Another desirable attribute for a. correlation output is that its peak is sharp and that the sidelobes
are low. This is necessary for anl accurate localization of the correlation peak (and hence the target
image in the scene) and for reducing false peaks. Several measures have been used to characterize the
peak sharpness. But the one we fill(] mosi convenient for analysis is Peak-to-Correlation Energy (IPCE)
defined below.

Ic(0' 0)12 (13)
P f JC(TT., drr 3tT)

This measure provides the ratio of the correlation peak to the total energy in the correlation plane.
PCE is large for delta-function type correlations and is close to zero for constant correlations. Recently,
Horner 24 suggested the use of a modified PCE measure in which the denominator, excludes the energy
at the peak. The PCE can be rewritten in terms of S(u, v) and 11(u, v) as below.

PCE = I f S(u, v) Hl*(u, v) du dvl(
SffIS(,, v)12 Il(u, v)1 du dv (14)

It is fairly easy to show that PCE is maximized by the inverse filter

IfIF(UV) - s-(u, (15)

SNR and PCE measure the noise tolerance and peak sharpness. Another important attribute needed
for optical correlation filters is their light throughput efficiency. We would like IH(u, v)j to be as close
to one as possible at all frequencies. Since these filters are energy absorbing, 0 _< IH(u, v)I :S 1. Thus
CMFs have IH(u,v)I close to zero at many frequencies and much of the light incident on P 2 will not
make it to the detector in plane P3 . To quantify this light efficiency, lhorner25 originally introduced the
following measure.

ff Ic(r•., Tr)12 dT. dr,, (16)
1- ffs(X,y)12 dxdy

The original Horner efficiency considers the ratio of the total energy in the correlation plane to the
total energy in the input plane. Since III(u,v)I < 1, the Hlorner efficiency < 1 for all filters. From the
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following frequenmy (holainl versioh of eq. { 10), it is (,-sv to see that 71n I I wlienleVe 1I1(u, v)0 1 for
all (it, v), i.e., while ever the filhEr isý an ; ;i-pas.s filter (e.g.. IP01", i0'l', etc.).

7 1 I-' I, ,)1 j s ,, ,(,,'/" : Jff 1.5( 71, v}[2 du dr 17

One drawback withi 71/ is thlat it i, cludes all the output light in the numerator. lHowever, it is more
important to have more light in the correlation peak than anywhere else. 'hus it is preferable to use
the following modified horner efficiency along the lines suggested by Caulfield 26 .

IC(0, 0)2
ff Is(x, y)I2 dx dy
I ff S(u, v) H1(u, v) du dvl2

= ff S(u, v)12 du dv

It can be seen) from eqs. (17) and (IS) that the filter Jt(u, v) affects only the numerators of both 7tH
and 7161. Thus all all-pass filters (e.g., POF, BPOF, etc.) yield the same maximal iljj. However the
numerator of eq. (18) is maximized (under the constraint Jt(L, v) <_ I) by the POF in eq. (3). Thus
7j11 appears to be the more alppropriate light efficiency measure to use.

Several other desirable attributes of correlation filters are more difficult to quantify. One of these is
the ability of the filters to locate the correlation peaks accurately. Even when there is no input noise.
we cannot be sure that a centered inpul leads to a correlation pea.k at the origin unless the phase of the
input FT is completely cancelled by the plhase of the filter. Such complete phase cancellation occurs with
CMF and POF and not with BPOFs. Thus we cannot be sure that the correlation peaks are correctly
located when we use BPOFs. \Vhen the input is corrupted by noise, the peak locations get affected
and the variance in the peak or Peak Location Error (PLE) is a descriptive measure. Recently, Vijaya
Kumar et. al. 27 showed that the CMF minimizes the PLE and in that sense is the best filter for locating
references in an input.

Another desirable feature for a correlation filter is that it should yield large correlation outputs with
a "desired" class of images and small outputs with all others. Filters designed to maximize SNR in eq.
(10) are very good at detecting an object in noise, but they may not be good at discriminating one class
from another. Thus a measure of the discrimination capability such as Fisher Ratio28 must be employed.

Filters such as SDFs are designed to provide distortion invariance. Thus a measure for the distortion
sensitivity must be used. Since c(0, 0) is usually considered in detecting an object, the following measure
for distortion sensitivity may prove useful.

D.5 = Ic(0,A)I. - c(0,0)l.m. (19)c(0, 0)lmA. + Ic(, O)mm' 9

where the subscripts "max" and "min" refer to maximum and minimum )c(0, 0)1 values obtained among
all possible distorted inputs. When Ic(0, 0)1 is the same for all distorted images, the distortion sensitivity
(DS) is zero. When Ic(0, 0)1..i, = 0, then DS achieves its highest (worst) value of one. Thus a distortion-
invariant filter tries to force DS to zero. Of course, the DS value obtained depends very much on what
we mean by the "Distortion Set". When the set of distortions span a small range, it is easier to achieve
DS values close to zero.
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range re(llireme,,ts, space bandwidth pirodict r('(lireleltls. etc. that we need to Specify. Bll for (vali-
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4 Optimal Trade-off Filters

Recently, Refregier 7 introduced Optimal Trade-off Filters (OTFs) which are the subject of this section.
In this approach, filters are designed to optimally tradeoff three performance measures, namely: the SNR,
the PCE and the modified Horner efficiency 171'. The OTFs are optimal in the sense that when two of
these measures are held constant, the OTFs yield the best value for the third measure among all possible
filters.

To understand the theory of OTFs, let us rewrite the three performance measures as below.

SN - [I~eakI 2  (20)
Variance '

PCE = leakl2  (1
PCV 11"ahl,(21)Output Energy'

and
Peak22)

Input Energy'

where.

Peak JJS(u, v)J(u.v)dudv, (23)

Variance JJP,(u, v) IH(u, v)12 du dv, (24)

Output Energy IS(u, v)12' H(u, v)l 2 du dv, (25)

and

Input Energy = JJIS(u, v)12 du dv. (26)

Suppose that we want to maintain PCE and 71' at specified levels and maximize the SNR. Since the
input energy cannot be controlled by the filter II(u, v), maintaining r7' in eq. (22) at a specified value
implies keeping IPeak] in eq. (23) at a constant value. Since JPeak] is a constant, maintaining PCE in
eq. (21) at a specified value is equivalent to keeping the output energy in eq. (25) a constant. Finally,
since IPeaki is a constant, maximizing the SNR in eq. (20) is equivalent to minimizing the variance in
eq. (24). Then the OTF H(u, v) can be obtained by minimizing the variance in eq. (24) while holding
the iPeaki in eq. (23) and the output energy in eq. (25) at constant values. Refregier 7 goes on to show
that this minimization leads to the follo,"ing filter.

H(u,,0 = ,o,.(%,, ) . -) ,(27)

where the function v7x{-} is defined as

{1() {Ay if Iyi S _/A (28)00 if I111> 1/A
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whlcri'e .Y IYI(J anud 0 < p < I atid A > 0 are design parameters. As cail be, secli fcront eq. (2?).

(p - ].A = 0) leads to Ihlie( ( " wherle;as (/i 0,A = 0) leads to the in verse filter. eI'lle (MIF mnaximizes

nloise It)lera:lce wh(erea;s tll(e llI\'l ,e filter (Il") Yi'eIds the sharl)est correlationl peak>,. III erlillediate valu(e,

of pt lead to filters that. conllplilill s e l)et valen the two extie(ies. 'lI'(p iatell(- tr A is used to indicate the

im)portance of light eflecieiicy\ q . \Vhien A is close to zero, GAs{y} of eq. (28) is essentially proportional to

y whereas when A is large, o{y) is essentially the phase-only version of y. Thus large A values indicate

that the light efficiency is i inporta ut.

In Fig. 2, we redraw a figure from lRefregier 7 to illustrate these tradeoffs graphically. For A = 0, we

obtain the tradeoff between PCE and SNRI with the CMF and IF at the extremes of the curve. As A

approaches infinity, we get a J)OF with worse (i.e., lower) values for both PCE and SNR. Other filters

such as BPOFs will have even lower SNRI values for the same PCE value. Of course this tradeoff curve

will change as we go to a different image.

0[=

IF (Vt=O)

CURVE

XPOF

CrlF
(p'=l)

SNR

Figure 2: Graphical illustration of the tradeoffs among SNR, PCE and r4, (Adapted from [71).

5 Fractional Power Filters

Recently, there has been a growing interest2 9 in the use of nonlinearities in the frequency plane of a
correlator. With the help of a particular class of nonlinearly recorded matched filters, we illustrate in

this section the tradeoffs inherent in such a filter design. We refer to this class of filters as Fractional

Power Filters 22 (FPFs).

I [l.s(u,v)lePCXI)Lje(u,v)] if IS(u,v)l v 0 (29)ttPFUv)= 0 if IS(U,v0l= o

where 0(u, v) is the phase associated with S(u, v) and where p is the power associated with the FPF. It
is easy to see that IIFPF(U, V) specializes to the IF, POF and CMF for p = -1,0 and + 1, respectively.
Since the phase of HFPF(u, v) is 0(u, v) for all p, the filter phase completely cancels (when there is no
input noise) the phase of the inp)ut FT thus ensuring that the resulting correlation peak is at the origin.
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For the case of white noise, ,,(nu, v) = A, and SNIftj."p in eq. (30) is niaxlniiized by p = 1 (the C(MI").
"T'he PCE of FPF can be obtained by substituting eq. (29) in eq. (14).

PCEPF - [ff IS.(u, v)IP+' du VJ2  (31)
ff JS(u, v)l 2(P+1) du dv

Once again, PCEFpF is maximized by p = -1, the IF. Similarly, the Horner light efficiency 7t,, of the
FPFs can be obtained by substituting eq. (29) in eq. (17).

1)1, 1 .ffS(u, v)12(l+l)du dv (32)
Jif IS(U, V)1,i2 du d32)

Hfere the constant 6 is chosen to ensure that the IPF under consideration (see eq. (29)) has a maximum
transmittance of one. The Horner efficiency in eq. (32) is easily related to i'4, and maximizing one is
equivalent to maximizing the other.

To illustrate the tradeoff resulting from varying p in FPF design, we show in Fig. 3 how the 3
performance measures (SNIZ, PCE and 7/1) vary as a function of ) for the aircraft image shown in Fig.
4. We have allowed p to vary between -2 and +2. WVe see that SNIZ increases with p until p +1 (the

--------

U1C?

Cr.
t.6

Z SNR
S/.. PCE

- i..... Light Eflic.

-2 -1 0 1 2

fractional power p

Figure 3: Variation in SNR, PCE and 71H as a function of the fractional power p for the aircraft image.

CMF) and then decreases afterwards. The PCE reaches its maximal value for p = -1 (the IF). The
light efficiency ruH attains its maximuni for)p = 0 (the POF). It is obvious from the curves in Fig. 3 that
while the nonlinearity may help improve one measure, it may hurt the other. For this image, the POF
(i.e., p = 0) appears to be the best compromise in the sense that it yields only 6 dB less in both SNR
and PCE from their optimum values. This type of numerical analysis was carried out 22 with two other
images with essentially the same conclusions.
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Figure 4: Aircraft (MIG) image used in numerical experiments.

6 Tradeoff by Region of Support Selection

The POF and the BPOF are allpass, i.e., they have a magnitude response of one at all frequencies.
This causes the POF and the BPOF to be extremely sensitive to noise in the inputO. This allpass
nature also causes them to become very sensitive to minor distortions in the input. One method to
alleviate these problems is to force the filter magnitude response at some spatial frequencies to zero. For
POFs, this may be accomplished using a binary (opaque/transmissive) mask next to the conventional
POF. When using a MOSLM, Kast et. al.3 ' have shown we can achieve 3 levels of transmittance (+1,
0 and -1). Thus the MOSLMs can be used to implement a BPOF with some spatial frequencies set to
have zero magnitudes. The set of frequencies for which IH(u, v)l i 0 is known as the Region of Support
(ROS). The selection of a proper ROS is critical and Vijaya Kumar and Bahri showed how the ROS
can be selected to maximize the SNR for POFs8 and BPOFs9 . More recently, Vijaya Kumar et. al.3 2

showed how the ROS can be selected to maximize the PCE for POFs, BPOFs and Complex Ternary
Matched Filters (CTMFs). In this section, we will demonstrate how the ROS can be selected to tradeoff
among the various measures. We will focus our attention on the design of BPOFs. In particular, we will
consider the tradeoff between the SNR and PCE. Note from eqs. (11) and (14) that the two measures
have the same numerator but different denominators. Tiffs leads to the following empirical compromise
performance measure (CPM) that combines the denominators of SNR and PCE using a weighting factor
7, i.e.,

CPAI = 1ff S(u, v) H*(u, v) du dv 2

ff Ij(u, v)12 [P. (u, v) + "ylS(u, v)121 du dv' (33)

where 7 is a positive constant to he specified by the designer. As 7 -- 0, CPM -- SNR and as - -- 00,
CPM - (PCE/ 7 ) so that at the two extreme values, we get filters that maximize the SNR and the PCE.
At intermediate 7 values, we get filters that compromise between the two extremes.

Let us now consider BPOFs with a region of support R, i.e.,

H u v ±1I for(u, v) E R
H(u,v)= 10 otherwise (34)

Thus the design of these filters consists of two tasks. One task is to choose R and the second task is
to decide whether H(u, v) is +1 or -1 at frequencies (u, v) in R. Farn and Goodman23 have shown that
the optimal method for deciding whether H(u, v) is +1 or -1 is to use a Threshold line aniglea3 (TLA)
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11(f)= +1

/0 Re

H(f)= -1

Figure 5: Threshold line angle needed for optical binary phase-only filter.

o as shown in Fig. 5. If the signal FT S(u,v) is on one side of this line, we choose JI(u, v) +1 and
otherwise, we choose 1I(it, v) = -1. For 0 = 0, 11(u, v) is obtained by binarizing the real part of S(u, r)
whereas for 0 = Tr/2, it is obtained by binarizing the imaginary part of S(u, v).

The best angle 0 is not known a priori and must be determined by a search. However, once a particular
0 is selected, the ROS leading to the lighest CPM can be shown 3 4 to be of the following form.

R = {(u. v): Sn(u,v) >T) (35)
P =(U, v) + _yIS(u, v) 12

where T is a threshold to be determined by search and where

SeR(U, v) = SR(U, v) cos0 + Sl(u, v) sin0, (36)

with SR(u, v) and Si(u, v) being the real part and the imaginary part, respectively, of S(u, v). Hendrix
et. al.3 4 go on to show how ROSs can be designed to tradeoff SNR versus 7& and PCE versus '
Flannery and Phillips3 5 call the BPOFs with a region of support as Ternary Phase-Amplitude Filters
(TPAFs) and discuss design tradeoffs in these filters.

To illustrate the tradeoff resulting from the ROS selection, we include here some simulation results
obtained using the ROS in eq. (35). We use the boundary image of the truck shown in Fig. 6. We
designed Optimal-CPM BPOFs assuming that the background noise is white, i.e., P,,(u, v) is a constant.
In Fig. 7 we show a graph depicting how SNR and PCE vary as we vary the -y in our BPOF design.
The lower right corner corresponds to -y = 0 (or maximum SNR) and the upper left corner uses a large
value of -y (or maximum PCE). Intermediate values of 7 show how SNR can be traded off for PCE and
vice-versa.

We have shown elsewhere34 that as -1 is increased, the area of ROS increases and the resulting
correlation peak is sharper. However at the same time, the noise sensitivity of the BPOF increases
because the ROS starts passing higher frequencies through.



Figure 6: liary, boundary image of a truck [34].
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Figure 7: PCE vs. SNR as y is varied [.341.
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7 Input Noise vs. Detector Noise

Much research has been carried out iM correlation filter design ill MiizinIg t1h1 tolerai ' 10C 1(1ilo) iM
the input plane. Aln often ignored reality is that detectors used in the correlation plane intiodii(, n•i.•,
in the detected correlation peak value and hence degrade the resulting performance. In fact, if detector
noise was absent, we could design correlation filters without worrying about their light efficiency. The
main reason to desire a large 71H is to ensure that the correlation plane detector receives enough light to
overcome the noise introduced in the detector. The usual procedure of maximizing the SNR (as defined
in eq. (10)) ignores this important detector noise. In this section, we demonstrate that the correlation
filter design provides a method for trading off tolerance to input noise against tolerance to detector noise.
To illustrate this, we start with a very simple model for the detected output y.

S= c(O,0) + nd, (37)

where c(O, 0) is the correlation output in the absence of noise and nld is a random variable describing
the detector noise. We model 114 as a random variable with mean Id and variance a2. Let l10 and Ill
denote the two detection hypotheses, i.e., tl0 denotes "signal absent" and lil denotes "signal present'.
Then an appropriate SNR measure is the following.

IC% IE{y/HI} - E{y/nol 2
(

SN Rd =l,[Var{y/J1,} + VaT{y/11o}]

where the subscript d is used to denote the fact that we are including the detector noise. Bahri36 showed
that this SNRd can be rewritten in terms of the filter I!(uv) as below.

Ill S(u, v) HJ(u, v) du dv(2

SNRd u o�d+ ff P.(u,v)IH(u,v)I2 dudv" (39)

This SNRd measure is very similar to the SNR measure in eq. (11) with the only difference being the
extra Cr term in the denominator. When the detector noise is very low, SNRd • SNR and the usual SNR
maximization is carried out. When the detector noise a.2 is large, then SNRd in eq. (39) is proportional
to IEfc(0,0))12 and we need to maximize the numerator in eq. (39) to maximize SNRd. The numerator
in eq. (39) is maximized by Phase-only filters. Thus, when the detector noise dominates, Phase-only
filters (with their 100% light throughput) are optimal. For intermediate situations, SNRd in eq. (39)
must be maximized. Recently, Vijaya Kumar et. al.3' have shown that the maximization of SNRd in eq.
(39) subject to the constraint that IH(u, v)I < 1 leads to Saturated Filters. Saturated Filters will also
be discussed in another paper8 in this critical review.

Bahri36 determined the ROSs that maximize the SNRd in eq. (39). "We show in Fig. 8 the 32 x 32
tank image used in Bahri's simulations. The ROSs obtained for this image are shown in Fig. 9. The
input noise spectrum Pn(u, v) is assumed to be a constant at N.. In Fig. 9a, we show the optimal region
of support when Crt/N. < 1. Dark regions in this figure indicate where H(u, v) = 0 and white regions
indicate where IH(u, v)I = 1. The (0,0) frequency corresponds to the center of the square. As expected,
the input noise dominates and the ROS is concentrated around low spatial frequencies so that the strong
signal components are allowed through while blocking high frequencies that have mostly noise energy.
In Fig. 9b, we show the optimal ROS when a•/N 0 = 1. Here the ROS has more high frequencies than in
Fig. 9a. Finally, in Fig. 9c, we show the Optimal ROS for the case when a 2/No > 1. Here the detector
noise dominates and the ROS is opened all the way to allow as much of the input light as possible.
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Figiire 8: The 32 x 32 tank image used in ROS determination t3G].

(a) cU/IN <K I ( d)oc//o 1 (c) og/N 0 » I

Figure 9: Optimal region of support for various combinations of input and detector noise levels [36].
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A.V dls n sllu d ill Sectio•i 2, one ,f thle' il hlt linmI' to ov,lAomiii tile distol ti li .&IId (iijy , ,
iiatched filters is the SI)l" mctliod. hI SMl)., the' 1jtitr is mamde florn a ;ICoipo<ite im1ge h(X, Y ) Ihat is the'
weighted suin of N traininig images Sj(J',yy). (XY) a)S il eq. (6). We know that the (M I. yieldh
the highest SNIl anliong all filters. Thlius, we inust be trading off the noise tolerance in order to ol)t ai
distortion tolerance as we go from CM l's to Sl)Fls. Ill this section, we will illustrate this tradeof mnoe
quantitatively.

To illustrate this tradeoff, we consider only in-plane rotation distortion. Let the N training images
be obtained by rotating the original image s(x,y) in increments of 27r/N radians. Assume that the
input image is a rotated version of s(z, y) that is corrupted by zero-mean, additive, white noise. Vijaya
Kumar and Pochapsky3 9 analyzed how the resulting SNR (defined in eq. (10)) varies as a function of
input image space bandwidth product (SB\WP), input SNR, the number of training images N ;,nJ Lle
distortion in the input image. They approached this by modeling s(x,y) as a sample realization from
a random process with a specified Autocorrelation function4". Vijaya Kumar and IPochiapsky 3'" us-d
Gaussian-shaped autocorrelation functions (ACFs) a~s well as exponential-shaped ACFs and obtained
similar results.

We show in Fig. 10 the output Signal-to-Noise Ratio (SNi) as a function of input distortion for three
different choices of N (1, 12 and 72). The input image s(z,y) has a space bandwidth product of 1000
and the input SNR was such that the output SNIR for the CMF is 10 dB when the input is not distorted-

12 TRAINING SET IMAGES

72 TRA~ININ SET 1IMAGES

4--

I TRAINIING SET IMlAGE

06 20o 40o l o 00 1 100 ~0
IN-PLANE ROTATION (DEGREES)

Figure 10: Output SNR as a function of input rotation for different IV values. Input image SBWP is
1000 [391.

In this figure, the curve corresponding to one training image shows how the output SNR is affected
by in-plane rotation. For no in-plane rotation, the output SNR is 10 dB and it steadily decreases with
increasing rotation and becomes as low as -60 dB when the rotation is 1800. The in-plane rotation shown
in Fig. 10 is from 0" to 1800 only because the remaining rotations can be determined from symmetry.
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'[his curve for "I training inage" clearly deinonstrates the distortion sensitivity of the CMIF.

In this sante ligure, we show the output SNI( as a function of input rotation for the same image. but

using S)l.s designed with 12 and 72 training images. \Vhen N = 12 is used, the output SNR is only
0 di3 when the input is undistorted. Similarly, the output SN I is 0 dB when the input is rotated by

multiples of 300 (corresponding to one of the 12 training images used). The output SNIt reaches its
minimum (approximately -30 dB) at 150,45°,750,...,345*. Thus, by using N 12, we improve the
worst-case output SNR (from -70 dB for the CMF to -30 dB for the SDF using N = 12) while degrading
the best-case output SNR (from 10 dB for the CMF to 0 dB for the SDF using N = 12). When the
number of training images used is increased to N = 72, both the best-case and the worst-case output
SNRs converge to the value of-10 dB. Any further increase in N is unnecessary since it would not affect
the output SNR significantly.

The results in Fig. 10 correspond to an image s(x,y) with SBWP = 1000. Vijaya Kumar and
Pochapsky39 illustrate how output SNR curves are affected by increasing the input SBWP. Itis interesting
to note that for N = 1, the output SNR is higher (for no input distortion) when the input SBWP is
higher. But with input distortion, this falls off more rapidly so that the worst-case SNR is usually lower
for the image with the higher SBWP. Also, it takes a larger N (for higher SBWP image) to reach the
situation where the "best-case" and "worst-case" output SNRs are equal.

Another interesting result that came out of this analysis is the potential danger of using a high
SBWP image when N is small. In Fig. 11, we show tie worst-case SNR as a function of N for three
different input SBWPs. For the smallest SBWP1 (i.e., 100), the worst-case output SNR levels off for

,ifIIl N R S 9WR' P -1 0000 ...................................

0 RICiiwG SHR' Sew - 1 000
".S P - 1000

SBOP - 10000

T

i C
'0

LITi o i

10 5 0 15 20 25 30 35 40 45 0 : ,5 60 GS 70

NUMBER OF TRAINING SET IMAGES

Figure 11: Worst-case output SNR as a function of the number of training images [39].

N > 25. However, if we use N = 25 for an image with SBWP = 10000, the resulting worst-case SNR
is significantly lower than that with SBWP = 100 and N = 25. Thus, when the number of available
training images is limited, it pays to reduce tlte SBWP of the input images deliberately. In fact, in Fig.
12, we show the optimum SBWP as a function of N, the number of training images. It is gratifying to see
that essentially the same curve was obtained for both the Gaussian-shaped and the exponential-shaped
ACFs.
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Figure 12: Optinunm S\IWI' as a function of the number of training images (39].

9 Optimal Tradeoff Composite Filters

In Section 4, we discussed OTFs which optimally tradeoff PCE, SNR and light efficiency. In this
section, we review some of the recent work by Refregier and Figue12 in extending the idea of tradeoffs
to composite filter design. To introduce this work, we need to introduce vector note.ion.

Suppose each of the N training images Sl(X,y),S 2 (.,y),...,SN(x,y) can be represented by arrays
with d pixels in them. Then we can denote these training images by d-dimensional column vectors
§i ,2,.. .,-j. Similarly, the filter h(x, y) can be denoted by the d-dimensional column vector h. Then the
SDF constraints in eq. (7) can be rewritten as

J14I = ci, i = 1,2,...,N, (40)

where the superscript T denotes the transpose. Eq. (40) represents N linear equations in d variables
(i.e., h). Since d > N, there are many degrees of freedom available (to optimize other measures) while
solving eq. (40).

As discussed in Section 2, the basic SDF approach assumes that h(x, y) is a linear combination of the
training images (see eq. (6)) and thus throws away all available degrees of freedom. One problem with the
basic SDF is its noise sensitivity. Vijaya Kumar t 9 proposed the minimum variance SDF (MVSDF) that
uses the additional degrees of freedom to maximize the noise tolerance while satisfying the equations in
(40). Another method to take advantage of these additional degrees of freedom is the minimum average
correlation energy (MACE) filter developed by Mahalanobis et. al.2 0 . Refregier and Figue 12 showed how
the two types of filters can be accommodated in a single design.

Suppose the input image is one of the training images corrupted by additive, white noise. Thet, the
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where S contains the A' traini ug ve( tots as its N columns, i.e.,

S = [ ,,I,- ..- 'NI ( 4 )

and c is a column vector with the N out put constraint values in it, i.e.,

!9 = [_c. , -.2 -.... , -!N ]IT . (44 )

With this notation, the N equationii in eq. (40) can be written more compactly as

STh = c. (-5)

It is easy to verify that the MVSI)F iii eq. (42) satisfies the constraint in eq. (45).

While the .M\SDF maximizes the noise tolerance, it does nothing to reduce the false peak problem.

The false sidelobe/peak problem is attacked by the MACE filter 20° which minimizes the average energy in

the correlation plane while satisfying the constraints in eq. (45). The MACE filter is most easily derived

in the frequency domain.

Let It, &i and S denote the frequency-domain counterparts of hi, si and S. Then eq. (45) can be
rewritten as

.- + i = _C, (46)

where we have ignored some constants. T"ie superscript + denotes conjugate transpose. The average

correlation plane energy Evg is as below.

I J I I(u, v)12 S,(u, v)12 dudvEa v9 =- N du=

Jf Il(uV1 P.(u,v)dudv (47)

where the average signal spectrum is given by

1N

P.(u, v) = Isu, v)l. (48)

The average correlation plane energy E.g9 in eq. (47) can be rewritten in matrix/vector notation as

E.". = h+Dl (49)

where b is a d x d diagonal matrix whose entries are given by P,(u, v) defined in eq. (48). The MACE
filter is obtained by minimizing Ev, in eq. (49) while satisfying the constraints in eq. (46). The resulting
MACE filter is given 20 by

&VC --E (50)hM~cE D (S1 D ) _,_-_.(0



12()

Tll. imitlix I) is di;igilA and is easily inverted. It is easy to verify thiat the filter it eq. (50) satisfies

thi .l)l" S , tlrt nrii ,,i l ( .I ( 6).

11)(l1 ;•r ii~~ 1,. i . 1, -,oosied a space doiaiin nmethlo(l to design coin)roinise coinposite filters. In

space di.manil, the mn;ltri x (e(uiv ,alent of/) is not diagonal and is not convmenient. Refrogier and Figue12

slhwe(d theatm thli Op tiiad 'lTradeoff Composite Filter (OTCF) is given as follows.

where the diagotial imatrix 1p of size dxd is given by

h 2, = 'U b+ (1U- )/P (52)

where 0 _< t < 1 is a design parameter and P/ is the diagonal matrix with the input noise spectral

density values.

When it = 0, the OTCF reverts to MVSDF and when y = 1, we obtain the MACE filter. For

intermediate I values, we get a compromise filtee. Refregier and Figue12 tested these filters numerically

using an image database of 20 trucks and 20 tanks. In Fig..J3, we reproduce the curve from Reference 12

that shows how 02 of eq. (41) (termed the Mean Square Error) and Eavg of eq. (49) (termed time average

correlation energy) vary as it is varied. The inside box shows the curve in a log scale. Note that both
MVSI)F and MACE represent rather poor choices since we can improve either of the two performance
measures by sacrificing the other by small amounts.
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Figure 13: Mean Square Error as a function of the average correlation plane energy for the image
database of 20 tanks and 20 trucks [12].

Refregier and Figue12 make the interesting observation that filters (such as MVSDF) that maximize
the noise tolerance appear to be tolerant to distortions, but discriminate poorly. On the other hand,
filters (such as MACE) that maximize the peak sharpness tend to discriminate well, but are unacceptably

sensitive to even minor distortions. The OTCFs discussed in this section provide a controlled approach to
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achie'ving an acceptable coin p ro i se betwvwen th ie two extrenesR lfregierII suggesIv ,d a s I i Ilar optiial
Ira(I,',4l- schi, for d(esignI iig 6icuiL ul l ii I otli c fi Iters.

1() Coiicl usio lis

The objective of this paper is to illustrate the fact that we are always trading oil one performance
measure against another in correlation filter design. We have discussed the following in order to reinforce

this concept.

"* Optimal tradeoff filters (OTFs) where we trade off SNR, PCE and i'11.

"* Fractional power filters (FPFs) where we trade off among the three measures by using different

powers.

"* Region of support (ROS) selection in POFs and lPOls to trade off SNR and IMCE.

"* ROS selection to trade off tolerance to input noise for tolerance to detector noise.

"• Trading off of the best-case SNR for improved worst-case SNR in designing synthetic discriminant

functions (SDFs).

"* Optimal tradeoff composite filters (OTCFs) that provide the best compromise between MACE and
MVSDF approaches.

It is our hope that the above illustrations will dispel any illusions that filter design schemes exist that
are the "best" in all categories. As expected, we must give up in one measure to gain the other. This
does not, however, imply that we can randomly choose a filter and use it. Finding a filter that gives the
best compromise between two extremes is still a nontrivial task and research into compromise composite
filters must be rigorously pursued.
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